Sub-Doppler supersonic jet spectra of the coupled $\mathbf{6 a}{ }_{0}^{1}$ and $\mathbf{6} \mathbf{b}_{0}^{1}$ vibronic bands of the $\left.\mathbf{S}_{\mathbf{1}}\left({ }^{1} \mathbf{B}_{\mathbf{2 u}}\right) \leftarrow \mathbf{S}_{\mathbf{0}}{ }^{\mathbf{1}} \mathbf{A}_{\mathbf{1 g}}\right)$ transition in monodeuterobenzene and their rovibrational analysis

By EBERHARD RIEDLE \dagger
Institut für Physikalische und Theoretische Chemie, TU München Lichtenbergstraße 4, D-85747 Garching, Germany and Joint Institute for
Laboratory Astrophysics, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado, 80309, USA

ANDREAS BEIL, DAVID LUCKHAUS and MARTIN QUACK
Laboratorium für Physikalische Chemie der ETH Zürich (Zentrum) CH-8092 Zürich, Switzerland

(Received 29 April 1993; accepted 3 June 1993)

Abstract

We report the rotationally resolved spectra of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{D}$ obtained in a supersonic seeded jet by Doppler free UV laser spectroscopy with an effective resolution of about $0.0045 \mathrm{~cm}^{-1}$. The coupled $6 \mathrm{a}_{0}^{1}$ and $6 \mathrm{~b}_{0}^{1}$ vibronic transitions are analysed in terms of their spectroscopic constants ($\tilde{\nu}_{0}=38634 \cdot 2429 \mathrm{~cm}^{-1}$ for $6 a_{0}^{1}$ and $\tilde{\nu}_{0}=38637.1792 \mathrm{~cm}^{-1}$ for $6 b_{0}^{1}$) and the Coriolis coupling constant $\xi_{6}^{\mathrm{c}}=0.09585 \mathrm{~cm}^{-1}$, obtained by constraining the C rotational constants to be equal for $6 \mathrm{a}^{1}$ and $6 \mathrm{~b}^{1}$. Simulations of the spectra result in rotational temperatures of about 2 K . The polarizations of the two transitions could be determined unambiguously as well as the approximate ratio of the transition moments.

1. Introduction

Benzene has been a prototype molecule for numerous spectroscopic investigations [1-38]. The UV transition from the electronic ground state (${ }^{1} \mathrm{~A}_{1 \mathrm{~g}}$ in $\mathrm{D}_{6 \mathrm{~h}}$) to the first excited singlet (${ }^{1} \mathrm{~B}_{2 \mathrm{u}}$ in $\mathrm{D}_{6 \mathrm{~h}}$) is electronically forbidden, but becomes vibronically allowed with the $\nu_{6}\left(\mathrm{E}_{2 \mathrm{~g}}\right)$ fundamental providing the prominent 'false' origin of the electronic transition $\left(6_{0}^{1}\right)$ with progressions in the totally symmetric fundamental $\nu_{1}\left(\mathrm{~A}_{\mathrm{Ig}}\right)$ and hot band sequences with $\nu_{16}\left(\mathrm{E}_{2 \mathrm{u}}\right)$ in the room temperature spectrum (all in Wilson's numbering scheme, see [1, 2, 29]). When replacing one hydrogen by a substituent, such as $\mathrm{F}, \mathrm{CH}_{3}$ or $\mathrm{NH}_{2}[31,38]$, the transition becomes electronically allowed (${ }^{1} \mathrm{~B}_{2}$ for S_{1}). Then, typically, the totally symmetric component of $\nu_{6}\left(6 \mathrm{a}, \mathrm{A}_{1}\right.$ in $\mathrm{C}_{2 \mathrm{v}}$) forms additional progressions on the true, allowed 0_{0}^{0} origin ([38] shows pictures of the vibrational modes).

Substitution of hydrogen by deuterium [26] or ${ }^{12} \mathrm{C}$ by ${ }^{13} \mathrm{C}$ [29] results in an intermediate situation. In the Born-Oppenheimer approximation the electronic transition would be still forbidden, but to higher order the 0_{0}^{0} band might become weakly allowed, the CD bond being slightly shorter than the CH bond on the
\dagger 1991-1992 JILA Visiting Fellow. Present address: Max-Born Institut für Nichtlineare Optik und Karzzeit spektroskopie, Rudower Chaussee 6, D-12489 Berlin, Germany.

Figure 1. Structure and axis definitions for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{D}$.
average. Still, the most strongly allowed transitions are expected to arise from ν_{6}, which in $\mathrm{C}_{2 \mathrm{v}}$ is split into $\nu_{6 \mathrm{a}}\left(\mathrm{A}_{1}\right)$ and $\nu_{6 \mathrm{~b}}\left(\mathrm{~B}_{2}\right.$, following Mulliken's proposals for axis definitions, z towards the substituent, x perpendicular to the ring, B_{2} being antisymmetric with respect to the $\sigma_{x z}$ plane, figure 1). However, the vibrational symmetry is rather heavily broken, as we shall see, with a shift of about $3 \mathrm{~cm}^{-1}$ of the B_{2} fundamental towards higher wave-numbers, about 0.5% of the ν_{6} fundamental wave-number.

Although there have been previous investigations of the electronic spectrum of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{D}$ [32-35], a rotational analysis has been presented so far only for the 14_{0}^{1} transition [32]. However, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{D}$ is particularly suited for such an analysis, as accurate ground state rotational constants for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{D}$ are known from microwave spectroscopy [26], in agreement with, but more accurate than the corresponding most recent structural data from Fourier transform infrared (FTIR) and laser spectroscopy [29,30] for $\mathrm{C}_{6} \mathrm{H}_{6}$. Previous infrared and Raman studies of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{D}$ fundamentals do not seem to include the ν_{6} fundamentals in any detail [36, and references cited therein].

The goal of the present paper is to provide an interpretation of the rovibrational line structure of the $6 a_{0}^{1}$ and $6 b_{0}^{1}$ bands in $C_{6} H_{5} D$. This analysis provides accurate excited state rovibrational constants, the interesting Coriolis coupling between the two bands and the intensity and polarization of the two transitions. We note that $6 b_{0}^{1}$ in $\mathrm{C}_{6} \mathrm{H}_{5} X$ electronic spectra in general appears only weakly, whereas the totally symmetric vibration 6a builds strong progressions. On the other hand in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{D}$, $6 \mathrm{~b}_{0}^{1}$ appears strongly. The resulting questions of the relative intensity and polarization of the coupled bands are of interest also in relation to the corresponding bands appearing in electronic spectra of rare gas van der Waals complexes with $\mathrm{C}_{6} \mathrm{H}_{6}$, where in $\mathrm{C}_{2 v}$ symmetry similar effects would be expected. To our knowledge, there has been no previous rovibrational analysis to answer these questions in any of those cases.

2. Experimental

To obtain a rotationally resolved electronic spectrum of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{D}$, sub-Doppler resolution is necessary. In addition, reasonably strong rotational cooling will facilitate the assignment of the spectrum by reducing the number of observed lines. Both effects can be attained in the Garching spectrometer which combines a well collimated supersonic molecular beam with an extremely narrow band tunable UV laser [48, 49]. The UV light of about 130 MHz bandwidth is generated by pulsed amplification of the continuous wave (c.w.) output of a single mode dye laser (Coherent CR 699/21; Coumarin 102 dye) pumped by a Kr ${ }^{+}$ion laser (Coherent CR 3000 K) and subsequent frequency doubling in a BBO crystal. The UV light
needed to pump the three stages of amplification (Coumarin 500 dye) is supplied by one of the discharge tubes of a Lambda Physik EMG 150 XeCl excimer laser. This laser system delivers about $400 \mu \mathrm{~J}$ of UV light, however, only on the order of $1 \mu \mathrm{~J}$ (focused to about 1 mm) was used for the recording of the spectra reported here. This is necessary to avoid saturation of the stronger rovibronic transitions [48].

Excitation of the molecules to be studied can either be monitored by observation of the fluorescence emission [48] or by ionization of the electronically excited molecules by photons from a second UV laser (pumped by the second discharge tube of the excimer laser) and subsequent detection of the molecular ions in a linear time of flight mass spectrometer [49]. The latter method was used for the present study since it allows for the selection of ions of a specific mass and therefore the discrimination of other isotopomers of benzene or molecular clusters which might be present in the expansion. $100 \mu \mathrm{~J}$ of UV light with a wavelength of $2739 \AA$ were used to ensure a high detection sensitivity and the two laser beams were carefully overlapped. The particular ionization wavelength was chosen as it does not generate any ions of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{D}$ by itself.

Commercially obtained $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{D}$ was used after three freeze, pump and thaw cycles to prepare a premix of 42 mbar of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{D}$ and 5 bar of Ar. Due to the mass selective detection scheme used, even large impurities in the sample would not lead to extra lines in the spectrum. The gas mixture was then expanded through a pulsed valve to form the molecular beam. Before entering the interaction chamber, the beam was skimmed to reduce the residual Doppler broadening. Six individual scans of $1.6 \mathrm{~cm}^{-1}$ in the UV were recorded to cover the entire spectral region of interest. For absolute calibration with an accuracy of about $3 \times 10^{-3} \mathrm{~cm}^{-1}$ the well known absorption spectrum of I_{2} [50] was used. Relative calibration of the experimental spectra was performed according to the simultaneously recorded transmission spectrum of a precisely calibrated and carefully stabilized Fabry-Perot interferometer [48]. The overlapping individual scans were finally merged to the comprehensive spectrum which was digitally smoothed as described in [40]. Due to the complex nature of the recording process, relative line intensities in the spectrum might be only accurate to about 10%.

3. Analysis of the spectrum

Figure 1 shows the definition of the axis system used for monosubstituted benzene derivatives following the Mulliken convention [31, 35]. This convention is most commonly used for electronic spectra of benzene derivatives, but differs from the one often used in infrared spectroscopy [29, 36] and also the one used in [32]. In the two conventions the species \mathbf{B}_{1} and \mathbf{B}_{2} need to be interchanged. For definiteness and in order to avoid confusion we give the character table for $\mathrm{C}_{2 \mathrm{v}}$ in table 1 with the definition used here including the cartesian components of the electric dipole moment vector $\boldsymbol{\mu}$ in the molecule fixed axis system and the components of the rotational angular momentum J . Table 1 also contains the reduction $n_{\Gamma_{v}}$ of vibrational species in $\mathrm{C}_{2 \mathrm{v}}$ for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{D}[31,38]$ and the correlation with the character table for the molecular symmetry group $S_{2}^{*}\left(=M_{54}\right)$ of order four for the simultaneous permutations of carbons and protons in positions 2,3 and 5,6 respectively, i.e. $(\alpha \beta)=(26)(35)\left(2^{\prime} 6^{\prime}\right)\left(3^{\prime} 5^{\prime}\right)$, and space inversion in the centre of mass, relevant for deriving the reduction of nuclear spin symmetry species $n_{\Gamma_{s}}$ in the molecular symmetry group. Because of a slight error concerning the nuclear spin

Table 1. Symmetry species ${ }^{(a)}$ in $\mathrm{C}_{2 \mathrm{v}}$ and S_{2}^{*}.

$\mathrm{C}_{2 v}$	S_{2}^{*}	E	$\begin{gathered} \mathrm{C}_{2} \\ (\alpha \beta) \end{gathered}$	$\begin{gathered} \sigma_{x z} \\ (\alpha \beta)^{*} \end{gathered}$	$\begin{aligned} & \sigma_{y z} \\ & E^{*} \end{aligned}$	$\boldsymbol{\mu}$	J	$K_{\text {a }} K_{\text {c }}$	$n_{\Gamma_{v}}$	$n_{\Gamma_{\text {s }}}$	g
A_{1}	A^{+}		1	1	1	μ_{z}		ee	11	60	60
A_{2}	A^{-}	1	1	-1	-1		J_{z}	eo	3	0	60
B_{1}	B^{-}	1	-1	1	-1	μ_{x}	J_{y}	оо	6	0	36
B_{2}	B^{+}	1	-1	-1	1	μ_{y}	J_{x}	oe	10	36	36

${ }^{(a)}$ For the molecular symmetry group [41] we use the symbol S_{2}^{*} corresponding to the permutation of the units α and β consisting of several nucleï, parity of the species is indicated by + or - in the exponent, following [42] (see also text). The columns μ and \mathbf{J} indicate the species of the components of the dipole and angular momentum vectors in the molecule fixed axis system. The column $K_{\mathrm{a}} K_{\mathrm{c}}$ gives the combination (even, odd), which results in the rotational species indicated, $n_{\Gamma_{v}}$ and $n_{\Gamma_{s}}$ give the reduction of vibrational normal mode species and nuclear spin species and g gives the nuclear spin statistical weight for the corresponding rovibronic species.
statistical weights in [32], we give here a brief statement concerning the origin of the nuclear spin statistical weights, following, e.g. [42]. The character under ($\alpha \beta$), an even parity fermion permutation, must be 1 . Thus the total Pauli-allowed species are A^{+}and A^{-}(nurovibronic). The four protons 2,3,5,6 generate a reducible representation of the following structure, with total nuclear spin I for four protons in parenthesis: $D_{\mathrm{R}}(I=2)=5 \mathrm{~A}^{+}, D_{\mathrm{R}}(I=1)=3 \mathrm{~A}^{+}+6 \mathrm{~B}^{+}, D_{\mathrm{R}}(I=0)=2 \mathrm{~A}^{+}$, hence D_{R} (total, four protons) $=10 \mathrm{~A}^{+}+6 \mathrm{~B}^{+}$. These combine with the $2 \times 3=6$ spin functions of proton (4) and deuteron (1), hence D_{R} (total, all spins) $=60 \mathrm{~A}^{+}+36 \mathrm{~B}^{+}$. The 96 functions are all of positive parity. This gives the reduction $n_{\Gamma_{s}}$ and the weights g in table 1.

The general electric dipole rovibronic selection rule is
(i) parity change ($+\leftrightarrow-$)
(ii) conservation of nuclear spin symmetry (i.e. A H B).

Figure 2 shows the scheme of the symmetry allowed, observed transitions. Rovibronic transitions to the $6 \mathrm{a}^{1}$ state are possible due to the component μ_{y} of the dipole operator and transitions to the $6 b^{1}$ state due to the component μ_{z}. The resulting selection rules are $\Delta K_{\mathrm{a}}= \pm 1, \ldots$ and $\Delta K_{\mathrm{c}}= \pm 1, \ldots$ for the transitions to the $6 \mathrm{a}^{1}$ state and $\Delta K_{\mathrm{a}}=0, \pm 2, \ldots$ and $\Delta K_{\mathrm{c}}= \pm 1, \ldots$ for the ones to the $6 \mathrm{~b}^{1}$ state. Rovibronic states in the two manifolds can be coupled by Coriolis coupling due to the x component of the rotational angular momentum.

For numerical reasons we used an axis system $x^{\prime}, y^{\prime}, z^{\prime}$ for the rotational state calculations, with $x^{\prime}=z, y^{\prime}=-y, z^{\prime}=x$, corresponding to the III ${ }^{T}$ representation of Watson's effective Hamiltonian (A reduction) with diagonal terms:
$\hat{H}_{\mathrm{rot}}^{\mathrm{vv}}=A \hat{J}_{x^{\prime}}^{2}+B \hat{J}_{y^{\prime}}^{2}+C \hat{J}_{z^{\prime}}^{2}-\Delta_{J} \hat{J}^{4}-\Delta_{J K} \hat{J}^{2} \hat{J}_{z^{\prime}}^{2}-\Delta_{K} \hat{J}_{z^{\prime}}^{4}-\frac{1}{2}\left[\delta_{J} \hat{J}^{2}+\delta_{K} \hat{J}_{z^{\prime}}^{2}, \hat{J}_{+}^{2}+\hat{J}_{-}^{2}\right]_{+}$,
where $\hat{J}^{2}=\hat{J}_{x^{\prime}}^{2}+\hat{J}_{y^{\prime}}^{2}+\hat{J}_{z^{\prime}}^{2}$, and $\hat{J}_{ \pm}=\hat{J}_{x^{\prime}} \pm \mathrm{i} \hat{J}_{y^{\prime}}$ and with a first-order Coriolis coupling term

$$
\begin{equation*}
\hat{H}_{\mathrm{cor}}^{\mathrm{vv}^{\prime}}=\mathrm{i} \xi_{6 b 6 a}^{\mathrm{c}} \hat{J}_{z^{\prime}} . \tag{2}
\end{equation*}
$$

This was found sufficient to fit the spectrum. We used the program described in [39] to simulate and analyse the rotational line structure of the transitions. Ground state

Figure 2. Scheme of the allowed rovibronic transitions of the 6 a and 6 b vibrations in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{D}$.
rotational constants were obtained from microwave spectroscopy [26]. The initial guess of the so far unknown excited state rotational constants was arbitrarily taken from the 14_{0}^{1} transition [32] and for the Coriolis coupling constant $\xi_{6}^{\mathrm{c}}=2 C \zeta_{6}^{\mathrm{c}}$ we used as initial guess $\zeta_{6}^{\mathrm{C}}=0.5788$ for the unsubstituted benzene [40]. The splitting of the vibrational frequencies 6 a and 6 b was estimated theoretically by Rava et al. [34] to be $5 \mathrm{~cm}^{-1}$ and, more accurately, in experiments by Rosman and Rice [33] as $3 \cdot 1 \mathrm{~cm}^{-1}$, which we used as starting value, together with the assumption of equal transition moments for $6 a_{0}^{1}$ and $6 b_{0}^{1} .330$ assigned lines contain the large majority of stronger transitions. Including some more, weaker transitions in the fit does not change the results appreciably.

4. Results and discussion

Figure 3 shows the experimental spectrum together with the simulation using the initial guess for the spectroscopic parameters. In spite of the relatively large resolution limited linewidth of $0.0045 \mathrm{~cm}^{-1}$, which may be compared to typical Doppler limited widths between 0.001 and $0.003 \mathrm{~cm}^{-1}$ for the fundamental transitions in the infrared at room temperature, the spectrum shows perfectly resolved rovibrational structure, because of the large changes of the moments of inertia upon electronic excitation and because of the very low temperatures of about 2 K achieved in the seeded jet expansion. This renders the assignment rather straightfoward with the initial guess of a simulation systematically shifted to lower frequency with similar overall structure. One observes two moderately well separated bands. Integrating the spectrum from $38632.0 \mathrm{~cm}^{-1}$ to $38635.8 \mathrm{~cm}^{-1}$ and from $38635.8 \mathrm{~cm}^{-1}$ to $38639 \cdot 2 \mathrm{~cm}^{-1}$, respectively, one finds the ratio $G_{\text {high }}: G_{\text {low }}=1 \cdot 2 \pm 0 \cdot 1$ for the relative integrated band strengths of high-frequency band and low-frequency band in agreement with the value 1.3 given by Rosman and Rice [33], with $G=$ $\int \sigma(\nu) \nu^{-1} \mathrm{~d} \nu \propto\left|\mu_{f i}\right|^{2}$, see [51].

Figure 3. Upper trace (i) Experimental supersonic jet spectrum of the coupled $6 \mathrm{a}_{0}^{1}$ and $6 \mathrm{~b}_{0}^{1}$ vibronic transitions of the $\mathrm{S}_{1} \leftarrow \mathrm{~S}_{0}$ electronic transition of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{D}$. The resolution is $0.0045 \mathrm{~cm}^{-1}$ and the estimated temperature 2 K . Lower trace (ii) Simulation of the experimental spectrum ($T_{\mathrm{Sim}}=2 \mathrm{~K}$) with estimated spectroscopic constants (see text).

Using the automatic assignment procedure [39], we were able to assign all the rovibronic lines. Because only low J quantum numbers ($J<6$) contribute at these very low temperatures to the spectrum, it was not possible to fit centrifugal distortion parameters. Even the two rotational constants $C\left(6 \mathrm{a}^{\mathrm{l}}\right)$ and $C\left(6 \mathrm{~b}^{1}\right)$ are highly correlated with the Coriolis coupling parameter ξ_{6}^{c} between the two levels. Within the experimental accuracy the spectra could be equally well fit with $\xi_{6}^{\mathrm{c}}=0$ or with $\xi_{6}^{\mathrm{c}}=0.09585 \mathrm{~cm}^{-1}$. However, for the fit with $\xi_{6}^{\mathrm{c}}=0$ the rotational constant $C_{6 \mathrm{~b}}$ ($=0.0909 \mathrm{~cm}^{-1}$) differs much from $C_{6 \mathrm{a}}\left(=0.0849 \mathrm{~cm}^{-1}\right.$), which is not plausible for these nearly degenerate vibrations. At the same time, the large apparent inertial defects obtained from the fit ($\Delta=-6.3 u \AA^{2}$ for $6 b^{1}$ and $+6.8 u \AA^{2}$ for $6 a^{1}$) would contradict the known planar geometry of benzene in its S_{1} state [11], see also the discussion for $6_{0}^{1} 10_{0}^{2}$ in [40]. With $\xi_{0}^{\mathrm{e}}=0$, furthermore, transitions involving high K_{a}, K_{c} quantum numbers also show systematic deviations, which are large compared with the root mean square deviation of the fit. Because of the limited range of J and K values accessible, we could not use these deviations for the independent determination of $\xi_{6}^{\mathrm{c}}, C_{6 \mathrm{a}}$ and $C_{6 \mathrm{~b}}$. Rather, we used two constraints, firstly setting the inertial defect Δ to zero:

$$
\begin{equation*}
\Delta=I_{\mathrm{c}}-I_{\mathrm{a}}-I_{\mathrm{b}} \cong 0, \tag{3}
\end{equation*}
$$

or alternatively setting $C_{6 \mathrm{a}}=C_{6 \mathrm{~b}}$. These physically justified constraints on the fit should provide rather accurate and reasonable values of the parameters, as summarized in table 2. The two independent fits showed no systematic deviations and provide similar parameters. More constants could be derived from unconstrained fits of spectra taken at higher temperatures, which might now easily be assigned, using the present results as a starting point.

The assignment of the low-frequency band as $6 \mathrm{a}_{0}^{1}$ (A_{1} vibrational, B_{2} vibronic symmetry, y polarized) and high-frequency band as $6 b_{0}^{1}\left(B_{2}\right.$ vibrational, A_{1} vibronic
Table 2. Rovibrational parameters ${ }^{(a)}$ for the vibrational ground state 0_{0} (from [26]) and the excited states $6 \mathrm{a}^{\frac{1}{2}}$ and $6 \mathrm{~b}^{1}$ (this work).

		fit 1		fit 2	
	0_{0}	$6 a^{1}$	$6 b^{1}$	$6 a^{1}$	$6 b^{1}$
$\tilde{\nu}_{0} / \mathrm{cm}^{-1}$	${ }^{0} 18.189769417$	$38634 \cdot 2431(1)$	$38637 \cdot 1794(1)$	38634.2429(1)	38637-1792(1)
A / cm^{-1}	0.189769417	$0 \cdot 181766(11)$	$0 \cdot 181726(15)$	$0 \cdot 181779(7)$	$0 \cdot 181763(9)$
B/ $/ \mathrm{cm}^{-1}$	0.177587323 0.091719252	$0 \cdot 170306(12)$	$0 \cdot 170286(13)$	$0 \cdot 170361(7)$	$0 \cdot 170322(8)$
C/ cm^{-1}	0.091719252	0.0879247	0.0879099	0.0878886	$0.0878886(16)$
$\xi_{6 \mathrm{~b}, 6 \mathrm{a}}^{\mathrm{c}} / \mathrm{cm}^{-1}$		$0 \cdot 096014(53)$		$0.095848(26)$	
$d_{\mathrm{rms}} / \mathrm{cm}^{-1}$				5×10^{-4}	
$N_{\text {data }}$		330		330	

${ }^{(a)}$ Centrifugal distortion constants for $0_{0}: \Delta_{J K}=-4 \cdot 00277 \times 10^{-8} \mathrm{~cm}^{-1} ; \Delta K=-1.20083 \times 10^{-7} \mathrm{~cm}^{-1} ; \delta_{J}=6.33772 \times 10^{-10} \mathrm{~cm}^{-1}$ These $\mathrm{Tere}^{\text {wised }}$
for all states. Standard deviations are given in terms of the last digits in parentheses, fit 1 is with the constraint for the inertial defect $\Delta^{(a)}=\Delta^{(b)}=0$, fit 2 with $C_{6 \mathrm{a}}=C_{6 \mathrm{~b}}$.

Figure 4. Experimental spectrum (see also caption figure 3) and the best simulations for $T=2.0 \mathrm{~K}$ (upper) and $T=1.5 \mathrm{~K}$ (lower).
symmetry, z polarized) results unambiguously from the present high-resolution analysis of selection rules and statistical weights for the individual line strengths. This is illustrated in figure 2. As can be seen from figure 4, the final simulations of the spectra provide an excellent agreement between experiment and simulation. The rotational temperatures for the best simulations are about 2 K . As this corresponds to $(k T / h c)>1 \mathrm{~cm}^{-1} \gg A \simeq B>C$, even this low temperature is somewhat too high to observe effects arising from nuclear spin symmetry conservation in the supersonic jet expansion [42, 43]. In figure 4 we also show a simulation for a rotational temperature of 1.5 K which does not show a dramatically poorer agreement with the experimental spectrum. This is partly due to the low accuracy in the line intensities caused by the complicated experimental detection. More importantly, jet conditions used in the recording of the spectrum do not provide a clean Boltzmann distribution of the rotational states [49].

In order to evaluate the ratio of transition moments ($\mu_{\mathrm{a}} / \mu_{\mathrm{b}}$) and the relative sign of the Coriolis coupling constant ξ_{6}^{c} with respect to the sign of this ratio, we have simulated the spectrum with variable $\mu_{\mathrm{a}} / \mu_{\mathrm{b}}$, using a Gaussian line shape with a full width half-maximum (FWHM) of $0.0045 \mathrm{~cm}^{-1}$ at various temperatures and compared with the experimental spectrum by visual inspection. The best agreement between experiment and simulation is obtained for

$$
\begin{gathered}
\xi_{6}^{\mathrm{c}}\left(\frac{\mu_{\mathrm{b}}}{\mu_{\mathrm{a}}}\right)>0 \\
\left|\frac{\mu_{\mathrm{b}}}{\mu_{\mathrm{a}}}\right| \cong 1 \cdot 2 \pm 0 \cdot 1,
\end{gathered}
$$

(with $T_{\text {rot }}$ about 2 K). One may compare this result with the degenerate polarization $\left|\mu_{\mathrm{a}}\right|=\left|\mu_{\mathrm{b}}\right|$ for $\mathrm{C}_{6} \mathrm{H}_{6}$ and the dominant y polarization, i.e. $\left|\mu_{\mathrm{a}}\right| \gg\left|\mu_{\mathrm{b}}\right|$, in monosubstituted benzene $\mathrm{C}_{6} \mathrm{H}_{5} X$ with $X=\mathrm{F}, \mathrm{NH}_{2}$ etc. [37].

Assuming that the 0_{0}^{0} transition occurs at $38124 \mathrm{~cm}^{-1}$ [28], one finds for the fundmentals $\nu_{6 \mathrm{a}}^{\prime}=510.2 \mathrm{~cm}^{-1}$ and $\nu^{\prime}{ }_{6 \mathrm{~b}}=513.2 \mathrm{~cm}^{-1}$, which can be compared with the theoretical predictions $513 \mathrm{~cm}^{-1}$ and $518 \mathrm{~cm}^{-1}$ by Rava et al. [34], based on the harmonic potential of Robey and Schlag [52]. Except for an early result [35] for the term value $6(a \text { or } b)_{1}=603 \mathrm{~cm}^{-1}$ there seems to be no accurate knowledge of the ground state constants of 6 a and 6 b . Approximate hot band shifts from sequence transitions $N_{0}^{1} 6 \mathrm{a}, \mathrm{b}_{1}^{1}$ are $81.5 \pm 1 \mathrm{~cm}^{-1}$ [28]. Considering the absence of anharmonicity corrections in the comparison, this shift is roughly consistent with the observed terms for $6 a, b^{1}$ and $6 a, b_{1}$, although the problem deserves further attention, probably best by high-resolution FTIR spectroscopy. Attempts to see 0_{0}^{0} by $1-, 2-$, and 3 -photon spectroscopy directly were unsuccessful [44]. The 6a, 6 b splitting in the ground state of $\mathrm{D}_{2 \mathrm{~h}}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{D}_{2}$ was estimated by contour analysis to be $6 \cdot 6 \pm 0 \cdot 3 \mathrm{~cm}^{-1}$ [45].

5. Conclusions

Supersonic jet spectra of monodeutero benzene show two prominent bands of about equal strength centred at $38634.24 \mathrm{~cm}^{-1}$ and $38637.18 \mathrm{~cm}^{-1}$, which can be unambiguously assigned due to their rotational line structure as $6 a_{0}^{1}$ for the lower and $6 b_{0}^{l}$ for the higher frequency. The rotational line structure is fully resolved with an experimental bandwidth of $0.0045 \mathrm{~cm}^{-1}$, about an order of magnitude below the Doppler limit at room temperature. Effective rotational constants and the Coriolis coupling constant could be evaluated with good accuracy, as well as an approximate absolute value for the ratio of transition moments for the two polarizations (y and z). This ratio is close to 1 (about $1 \cdot 2$), which indicates the partial retainment of the symmetric, degenerate value 1 in $\mathrm{D}_{6 \mathrm{~h}}$ benzene. In the rotational analysis it was found that the Coriolis coupling between the $6 a^{1}$ state and the $6 b^{1}$ state has to be included in the modelling in order to obtain physically meaningful values for the rotational constants. This off-diagonal coupling in the asymmetric top $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{D}$ is the direct extension of the well known diagonal Coriolis coupling in the symmetric top $\mathrm{C}_{6} \mathrm{H}_{6}$ which splits the $(+l)$ and $(-l)$ levels of the 6^{1} state $[11,40,48]$. The value 0.5453 for the Coriolis coupling constant calculated from $\zeta_{6}^{C}=\xi_{6}^{C} / 2 C$ lies at nearly $1 / 6$ of the way between the value $\zeta_{6}=0.5788$ for $\mathrm{C}_{6} \mathrm{H}_{6}[40]$ and $\zeta_{6}=0.3912$ for $\mathrm{C}_{6} \mathrm{D}_{6}$ [49] in agreement with a simple, intuitive picture.

The line resolved rovibronic transitions allow for accurate conclusions about the rotational constants, particularly so, as Coriolis coupling is properly accounted for, and therefore confirmation of the planar $D_{6 h}$ geometry of benzene in its ${ }^{1} B_{2 u}$ electronic state [11, 40]. The asymmetric top $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{D}$ gives, in a sense, more stringent data on this question than the symmetric top $\mathrm{C}_{6} \mathrm{H}_{6}$. Of course, small asymmetries of the equilibrium structure so far cannot be ruled out, neither for the ground nor the excited state of benzene, as no r_{e} structure is known at present and even the exact planarity at equilibrium may remain subject to questions, as has been pointed out in [29], to which we refer for a critical discussion of structural data from rotationally line resolved data for benzene. In order to discuss the present rotational constants in terms of structural changes, we have performed some test calculations. A substitution structure gives $r_{\mathrm{CH}}=108.2 \mathrm{pm}$ and $r_{\mathrm{CC}}=139.5 \mathrm{pm}$ in the ground electronic state with $\mathrm{D}_{6 \mathrm{~h}}$ geometry [26]. Electronic excitation $\left(^{*}\right.$) into the $6 \mathrm{a}^{1}$ or $6 \mathrm{~b}^{1}$ levels results in a change $\Delta r_{\mathrm{CH}}=r_{\mathrm{CH}}^{*}-r_{\mathrm{CH}} \simeq-0.5 \mathrm{pm}$ somewhat less than indicated by the early work on benzene [11], and $\Delta r_{\mathrm{CC}} \simeq 3.5 \mathrm{pm}$, in essential agreement with the
early data [11]. Most of these changes result from electronic excitation, α_{6}^{B} being expected to be similar to the ground state value in $\mathrm{C}_{6} \mathrm{H}_{6}$ (about $0.00014 \mathrm{~cm}^{-1}$ [29]), the motion of ν_{6} corresponding to a slight distortion of the CC frame [38]. Our calculations indicate that additional planar distortions of $0 \cdot 1 \%$ in the CC bond length or 0.5% in r_{CH} would give significant discrepancies with our experiment on the excited electronic state, as would changes of the out of plane angle of 3° to 4° into a boat or chair form of the CC frame and 5° to 6° out of plane angle of the hydrogen atoms (with planar C_{6} frame). Of course, all of these are effective structural changes in the excited electronic state. Very little can be said about the exact, possibly distorted r_{e} structure, if, for instance, there are just slight bumps in the potential at the symmetrical configuration.

The rotational analysis of the vibronic spectrum of asymmetric top benzene is also of some relevance for current discussions of the analysis of rovibronic spectra of asymmetric top complexes containing benzene [46, 47]. Assuming a rigid asymmetric arrangement of benzene in the cluster, the 6^{1} state can be expected to be slightly split into its a and b components. These will again be coupled by Coriolis coupling and the influence on the rotational structure in the spectrum will be quite pronounced due to the small value of the vibronic splitting. As we have clearly shown, a meaningful structural determination will require proper inclusion of Coriolis coupling in the rotational analysis of such cluster systems.

Our work is supported financially by the Schweizerischer Nationalfonds and the Schweizerischer Schulrat, as well as by the Deutsche Forschungsgemeinschaft (experimental set up and research stipend to E.R.). We wish to thank R. Sußmann for value help with the experiments.

Appendix. List of transition wave-numbers (observed and calculated with the parameters of fit 1 in table 2). $v=1$, ground state; $v=2,6 \mathrm{a}^{1}$ vibronic state; $v=3,6 \mathrm{~b}^{1}$ vibronic state

v				$v J K_{n} K_{6}$	$\bar{\nu}_{\text {ubs }} / \mathrm{cm}^{-1}$	$\bar{\nu}_{\text {obs }}-\tilde{\nu}_{\text {calc }} / \mathrm{cm}^{-1}$
2	1	1	1	1202	38633.7766	$-0.122 E-04$
2	2	1	2	13003	38633.5578	$-0.838 E-03$
2	3	1	3	1404	38633.3320	$-0.577 E-03$
2	4	1	4	1505	38633.0930	$-0.453 E-03$
2	5	1	5	1606	38632.8406	$-0.431 E-03$
2	6	1	6	1707	38632.5750	$-0.555 E-03$
2	7	1	7	1808	38632.2964	$-0.924 E-03$
2	0	0	0	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	38633.9616	$-0.111 E-04$
2	1	0	1	$1 \begin{array}{llll}1 & 2 & 1 & 2\end{array}$	38633.7641	$0.130 E-03$
2	2	0	2	13113	38633.5578	$0.309 E-03$
2	3	0	3	$\begin{array}{llll}1 & 4 & 1 & 4\end{array}$	38633.3320	$-0.510 E-03$
2	4	0	4	1515	38633.0930	$-0.449 E-03$
2	5	0	5	16616	38632.8406	$-0.431 E-03$
2	6	0	6	17717	38632.5750	$-0.555 E-03$
2	7	0	7	$\begin{array}{llll}1 & 8 & 1 & 8\end{array}$	38632.2964	$-0.924 E-03$
2	2	2	1	$\begin{array}{llll}1 & 3 & 1 & 2\end{array}$	38633.3948	$-0.695 E-04$
2	4	2	3	1514	38632.9043	$-0.511 E-03$
2	5	2	4	13.615	38632.6501	$-0.201 E-03$
2	6	2	5	$1 \begin{array}{llll}1 & 7 & 1 & 6\end{array}$	38632.3824	$-0.232 E-03$
2	1	1	1	1220	38633.4063	-0.658E-04
2	1	1	0	$\begin{array}{llll}1 & 2 & 2 & 1\end{array}$	38633.5669	$0.113 E-03$
2	2	1	2	$1 \begin{array}{llll}1 & 3 & 2 & 1\end{array}$	38632.8572	$-0.734 E-03$
2	2	1	1	$\begin{array}{llll}1 & 3 & 2 & 2\end{array}$	38633.3544	$-0.206 E-03$
2	3	1	3	1422	38632.2432	$-0.138 E-02$
2	3	1	2	1423	38633.1425	0.247E-03
2	4	1	3	$1 \begin{array}{llll}1 & 5 & 2 & 4\end{array}$	38632.9043	$-0.374 E-04$
2	5	1	4	1625	38632.6501	$-0.171 E-03$
2	6	1	5	$172-6$	38632.3824	$-0.230 E-03$
2	3	3	1	1422	38633.0100	0.814E-04
2	4	3	2	1523	38632.7262	0.838E-03
2	5	3	3	16624	38632.4626	0.459E-03
2	2	0	2	$\begin{array}{llll}1 & 3 & 3 & 1\end{array}$	38632.7838	$-0.453 E-04$
2	2	2	1	$1 \begin{array}{llll}1 & 3 & 3 & 0\end{array}$	38633.0146	-0.526E-03
2	2	2	0	$\begin{array}{llll}1 & 3 & 3 & 1\end{array}$	38633.1500	-0.939E-03
2	3	2	1	$\begin{array}{lllll}1 & 4 & 3 & 2\end{array}$	38632.9241	0.996E-04
2	4	2	2	$1 \begin{array}{llll}1 & 5 & 3 & 3\end{array}$	38632.7087	0.891E-03
2	3	3	1	1440	38632.6084	0.105E-03
2	3	3	0	14441	38632.7157	$0.316 E-03$
2	4	3	1	$1 \begin{array}{llll}1 & 5 & 4 & 2\end{array}$	38632.4730	$0.710 E-03$
2	5	3	2	16643	38632.2522	0.121E-03
2	4	4	1	15550	38632.1832	$-0.210 E-03$
2	4	4	0	$1 \begin{array}{llll}1 & 5 & 5 & 1\end{array}$	38632.2621	$0.289 E-04$
2	1	1	0	$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$	38634.3259	0.349E-04
2	2	1	1	12002	38634.4579	0.168E-04
2	3	1	2	1303	38634.6099	$0.346 E-03$
2	4	1	3	1404	38634.7388	$0.347 E-03$
2	5	1	4	1505	38634.8515	$0.105 E-03$
2	1	0	1	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	38634.1308	$-0.496 E-04$
2	2	0	2	1211	38633.9409	$-0.555 E-03$
2	3	0	3	$1 \begin{array}{llll}1 & 3 & 1 & 2\end{array}$	38633.7028	$-0.682 E-03$
2	4	0	4	$1 \begin{array}{llll}1 & 4 & 1 & 3\end{array}$	38633.4601	-0.119E-02
2	5	0	5	$\begin{array}{llll}1 & 5 & 1 & 4\end{array}$	38633.2080	$-0.476 E-03$
2	6	0	6	$1 \begin{array}{llll}1 & 6 & 1 & 5\end{array}$	38632.9418	$-0.115 E-02$
2	2	2	0	$\begin{array}{llll}1 & 2 & 1 & 1\end{array}$	38634.3087	$0.151 E-03$
2	2	2	1	1212	38634.4909	$-0.853 E-04$
2	3	2	1	$\begin{array}{llll}1 & 3 & 1\end{array}$	38634.4007	$0.375 E-03$

v		$K_{\text {t }} K_{c}$	$v J K_{\alpha} K_{c}$	$\tilde{\nu}_{\text {, }}$ ¢ $/ \mathrm{cm}^{-1}$	$\tilde{\nu}_{\text {chas }}-\tilde{\nu}_{\text {calc }} / \mathrm{cm}^{-1}$
2	4	22	1413	38634.5422	$0.497 E-03$
2	4	23	$\begin{array}{lllll}1 & 4 & 1 & 4\end{array}$	38634.7388	$-0.880 E-04$
2	5	24	$1 \begin{array}{llll}1 & 5 & 1 & 5\end{array}$	38634.8515	0.777E-04
2	6	24	$\begin{array}{llll}1 & 6 & 1 & 5\end{array}$	38634.7598	0.833E-03
2	2	11	1220	38634.0875	$-0.137 E-03$
2	2	12	1221	38633.9071	0.112E-02
2	3	13	$1 \begin{array}{llll}1 & 3 & 2 & 2\end{array}$	38633.6977	0.111E-03
2	4	13	1422	38633.6505	$0.390 E-04$
2	4	14	1423	38633.4601	$-0.666 E-03$
2	5	14	1523	38633.3864	$-0.101 E-02$
2	5	15	15524	38633.2080	$-0.442 E-03$
2	6	15	1624	38633.1175	$-0.748 E-03$
2	6	16	1625	38632.9418	$-0.115 E-02$
2	3	30	$1 \begin{array}{llll}1 & 3 & 2 & 1\end{array}$	38634.2846	0.204E-03
2	3	31	1322	38634.4628	$-0.123 E-03$
2	4	32	1423	38634.5568	$0.135 E-03$
2	6	33	$1 \begin{array}{llll}1 & 6 & 2 & 4\end{array}$	38634.5662	$0.107 E-02$
2	6	34	1665	38634.7598	$0.698 E-03$
2	3	21	$\begin{array}{llll}1 & 3 & 3 & 0\end{array}$	38634.0213	$0.719 E-03$
2	3	22	$1 \begin{array}{llll}1 & 3 & 3 & 1\end{array}$	38633.8412	0.703E-04
2	4	22	$1 \begin{array}{llll}1 & 4 & 3 & 1\end{array}$	38633.8605	0.437E-03
2	4	23	$\begin{array}{llll}1 & 4 & 3 & 2\end{array}$	38633.6338	$0.264 E-03$
2	5	23	$\begin{array}{lllll}1 & 5 & 3 & 2\end{array}$	38633.5885	0.329E-03
2	5	24	$1 \begin{array}{llll}1 & 5 & 3 & 3\end{array}$	38633.3864	0.104E-02
2	6	25	16354	38633.1175	$-0.577 E-03$
2	4	40	14431	38634.2557	0.540E-03
2	4	41	$1 \begin{array}{llll}1 & 4 & 3 & 2\end{array}$	38634.4266	0.924E-03
2	5	41	1535	38634.2490	0.102E-02
2	6	42	1633	38634.3466	0.132E-02
2	6	43	16354	38634.5714	0.131E-02
2	4	31	1440	38633.9278	0.305E-03
2	4	32	$1 \begin{array}{llll}1 & 4 & 4 & 1\end{array}$	38633.7548	0.549E-03
2	5	32	15541	38633.7930	0.169E-02
2	5	5 D	$1 \begin{array}{llll}1 & 5 & 4 & 1\end{array}$	38634.2228	0.638E-03
2	5	51	15542	38634.3789	$-0.328 E-03$
2	6	51	$1 \begin{array}{llll}1 & 6 & 4 & 2\end{array}$	38634.1618	0.168E-02
2	5	41	15550	38633.8074	0.777E-03
2	1	11	1000	38634.5095	$-0.142 E-03$
2	2	12	11001	38634.6647	$-0.358 E-03$
2	3	13	1202	38634.8000	$-0.867 E-03$
2	4	14	13003	38634.9277	$-0.367 E-03$
2	5	15	14004	38635.0421	-0.457E-03
2	6	16	1505	38635.1433	$-0.772 E-03$
2	7	17	$1 \begin{array}{llll}1 & 6 & 0 & 6\end{array}$	38635.2323	$-0.582 E-03$
2	8	18	$\begin{array}{llll}1 & 7 & 0 & 7\end{array}$	38635.3080	$-0.131 E-02$
2	9	19	18808	38635.3724	$-0.127 E-02$
2	10	110	$\begin{array}{llll}1 & 9 & 0 & 9\end{array}$	38635.4225	$-0.378 E-02$
2	3	31	12202	38635.5662	$-0.749 E-06$
2	4	32	$\begin{array}{llll}1 & 3 & 0 & 3\end{array}$	38636.0242	$0.234 E-03$
2	5	33	$1 \begin{array}{llll}1 & 4 & 0 & 4\end{array}$	38636.4955	$-0.673 E-03$
2	2	02	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	38634.6517	$-0.105 E-03$
2	3	03	$\begin{array}{llll}1 & 2 & 1 & 2\end{array}$	38634.8000	$0.403 E-03$
2	4	04	$\begin{array}{llll}1 & 3 & 1 & 3\end{array}$	38634.9277	$-0.289 E-03$
2	5	05	$\begin{array}{llll}1 & 4 & 1 & 4\end{array}$	38635.0421	$-0.453 E-03$
2	6	06	$1 \begin{array}{llll}1 & 5 & 1 & 5\end{array}$	38635.1433	$-0.772 E-03$
2	7	07	1616	38635.2323	$-0.582 E-03$

v	J	$K_{n} K_{r}$	$J K_{n} K_{r}$	$\bar{\nu}_{\text {dibs }} / \mathrm{cm}^{-1}$	$\bar{\nu}_{\text {coba }}-\bar{\nu}_{\text {calc }} / \mathrm{cm}^{-1}$	$v{ }^{\text {v }} J K_{a} K_{v}$	v J $K_{a} K_{c}$	$\bar{\nu}_{\text {abs }} / \mathrm{cm}^{-1}$	$\bar{\nu}_{\text {c,1,s }}-\nu_{\text {cake }} / \mathrm{cm}^{-1}$
2	8	08	717	38635.3080	$-0.131 \bar{E}-02$	3606	1707	38635.7289	$-0.175 E-03$
2	9	09	818	38635.3724	$-0.127 E-02$	370	80	38635.5228	$-0.294 E-02$
2	10	10	1919	38635.4225	$-0.378 E-02$	$\begin{array}{lllll}3 & 8 & 0 & 8\end{array}$	190	38635.3185	$-0.898 E-03$
2	2	21	0	38634.8579	$0.348 E-04$	3	121	38636.5400	0.42TE-03
2	2	20	11	38635.0189	0.181E-05	$\begin{array}{lllll}3 & 1 & 1 & 1\end{array}$	121	38636.7171	$-0.823 E-0.3$
2	3	2	$\begin{array}{llll}1 & 2 & 1 & 1\end{array}$	38634.9986	$-0.139 E-03$	$\begin{array}{llll}3 & 2 & 1\end{array}$	$\begin{array}{lll}3 & 1 & 2\end{array}$	38636.3035	$0.501 E-03$
2	3	2	1212	38635.4963	$-0.140 E-03$	$\begin{array}{lllll}3 & 2 & 1 & 2\end{array}$	131	38636.5191	$-0.655 E-03$
2	4	23	2	38635.1098	$-0.600 E-04$	3	141	38636.1039	.472E-03
2	4	22	$131 \begin{array}{lll}1 & 1\end{array}$	38636.0091	0.694E-03	331	41	38636.3244	$-0.190 E-03$
2	5	24	1413	38635.2189	$-0.359 E-03$	$\begin{array}{llll}3 & 4 & 1\end{array}$	151	38635.8964	$0.432 E-03$
2	5	2	414	38636,4955	0.107E-02	41	15	38636.1277	$-0.454 E-03$
2	6	2	14	38635,3185	0.299E-03	351	61	38635.6844	$-0.121 E-03$
2	8	27		38635.4783	$0.352 E-03$	351	161	38635.9291	$-0.662 E-03$
2	9	28	817	38635.5382	$-0.896 E-03$	361	1	38635.4703	$-0.545 E-03$
2	4	41	312	38635.9022	$0.200 E-03$	361	71	38635.7289	$-0.175 E-03$
2	3	12	1221	38634.9569	$0.305 E-05$	37817	181	38635.5228	$-0.294 E-02$
2	4	13	322	38635.1035	0.345E-04	381	9	38635.3185	-0.898E-03
2	5	14	423	38635.2189	0.192E-03	310	22	38636.3372	-0.267E-03
2	6	1	1524	38635.3185	0.335E-03	3202	1321	38635.8184	3
2	8	17	1726	38635.4783	0.353E-03	22	32	38636.1601	$-0.503 E-04$
2	9	18	1827	38635.5382	$-0.896 E-03$	322	132	38636.3316	0.309E-03
2	3	3	22	38635.1959	$-0.544 E-04$	332	1422	38635.8847	3
2	3		22	38635.3329	0.458E-03	22	2	38636.1089	$0.334 E-03$
2	4	32	$1 \begin{array}{llll}1 & 3 & 2 & 1\end{array}$	38635.3236	0.337E-03	342	152	38635.6696	$-0.117 E-03$
2	4	31	2	38635.7829	$0.777 E-03$	342	1524	38635.8964	$-0.383 E-04$
2	5		422	38635.4079	$-0.281 E-03$	3512	1624	38635.4530	.164E-02
2	5	32	42	38636.2854	0.543E-03	352	1625	38635.6844	-0.153E-03
2	6	3	523	38635.4963	0.640E-04	362	172	38635.4703	-0.547E-03
2	7	35	62	38635.5789	$-0.554 E-05$	372	1827	38635.2546	$-0.247 E-03$
2	8	6	1725	38635.6494	$-0.282 E-03$	3	1	38635.7469	$0.791 E-03$
2	5	5	1422	38636.2364	0.344E-03	$\begin{array}{lllll}3 & 3 & 1 & 2\end{array}$	143	38635.4225	.712E-03
2	5	23	432	38635.3890	$-0.775 E-04$	$\begin{array}{lllll}3 & 3 & 3 & 0\end{array}$	$\begin{array}{lllll}1 & 4 & 3 & 1\end{array}$	38635.7737	0.717E-03
2	7	25	$1 \begin{array}{llll}1 & 6 & 3\end{array}$	38635.5789	$0.176 E-03$	333	3	38635.9345	$0.266 E-03$
2	8	26	1735	38635.6494	$-0.269 E-03$	$\begin{array}{lllll}3 & 4 & 3 & 1\end{array}$	153	38635.4530	$-0.178 E-03$
2	4		1330	38635.5228	0.543E-03	$3{ }_{3} 4232$	153	38635.6844	0.258E-03
2	4	40	1331	38635.6302	0.343E-03	$\begin{array}{lllll}3 & 5 & 3 & 2\end{array}$	1	38635.2189	0.204E-02
2	5	2	1431	38635.6386	0.327E-03	$\begin{array}{lllll}3 & 5 & 3 & 3\end{array}$	163	38635.4530	-0.180E-03
2	5	41	1432	38636.0502	$0.131 E-02$	332	1440	38635.4835	0.142E-02
2	6	4	532	38635.6989	0.860E-03	3422	15441	38635.0078	0.324E-03
2	5	2	1441	38635.4835	0.106E-02	3440	15	38635.3809	$0.146 E-02$
2	6	3	1542	38635.6553	0.954E-03	355.42	164	38635.2488	0.145E-02
2	7		1643	38635.7552	$0.166 E-02$	22	1202	38637.4345	-0.688E-04
2	5	51	1440	38635.8349	0.467E-03	3322	130	38637.5756	$-0.267 E-63$
2	5	50	441	38635.9139	0.608E-03	3423	140	38637.7304	-0.154E-03
2	6	2	15	38635.9439	$0.854 E-03$	3524	150	38637.8857	0.232E-04
2	7	53	1642	38635.9818	0.107E-02	2	160	38638.0401	$0.113 E-02$
2	6	2	55	38635.6989	0.113E-02	2	170	38638.1901	$0.138 E-03$
2	6	0	5551	38636.1849	$0.779 E-03$	11	1	38637.0844	$-0.403 E-03$
2	7	71	1660	38636.4092	0.143E-02	110	1	38637.2496	$-0.323 E-03$
2	7	70	66	38636.4435	0.848E-03	2	2	38636.9031	$-0.619 E-03$
3	0	0	1	38636.9094	-0.693E-03	21	2	38637.3986	-0.515E-03
3	1	01	2	38636.7069	$-0.814 E-03$	331	3	38636.6948	$-0.762 E-03$
3	2	2	130	38636.5191	$0.417 E-03$	$\begin{array}{lllll}3 & 3 & 1 & 2\end{array}$		38637.5703	0.169E-03
3	3	3	404	38636.3244	-0.121E-03	3.41	4	38636.4955	-0.491E-03
	4	04	5	38636.1277	-0.451E-03	341	4	38637.7304	$0.355 E-03$
3	5	05	6	38635.92	-0.662E-03	35114	15515	38637.8857	0.575E-04

v	J			$v J K_{n} K_{C}$	$\ddot{\nu}_{\text {chs }} / \mathrm{cm}^{-1}$	$\bar{\nu}_{\text {olos }}-\bar{\nu}_{\text {ralc }} / \mathrm{cm}^{-1}$		$J K_{n} K_{r}$	$v J K_{a} K_{r}$	$\bar{\nu}_{1}, b^{\prime} / \mathrm{cm}^{-1}$	$\bar{\nu}_{\text {cibe }}-\bar{\nu}_{\text {calc }} / \mathrm{cm}^{-1}$
$\overline{3}$	6	1	5	$\begin{array}{lllll}1 & 6 & 1 & 6\end{array}$	38638.0401	0.113E-02		212	111	38637.6138	-0.268E-03
3	7	1	6	1717	38638.1901	$0.139 E-03$		$\begin{array}{lll}3 & 1 & 2\end{array}$	2	38637.9542	$0.105 E-03$
3	3	3	1	13112	38637.4115	$0.410 E-03$		$\begin{array}{lll}3 & 1 & 3\end{array}$	212	38637.7922	0.522E-03
3	4	3	2	1413	38637.5184	$0.364 E-03$		413	3	38638.1008	$-0.217 E-03$
3	5	3	3	15154	38637.6530	$-0.304 E-03$		4114	$\begin{array}{lll}3 & 1 & 3\end{array}$	38637.9624	$-0.294 E-03$
3	6	3	4	1615	38637.7922	$-0.586 E-03$		$\begin{array}{lllll}3 & 5 & 1 & 4\end{array}$	$1 \begin{array}{llll}1 & 4 & 1\end{array}$	38638.2526	$-0.879 E-03$
3	2	0	2	$\begin{array}{llll}1 & 2 & 2 & 1\end{array}$	38636.8654	$-0.625 E-03$		3 l	14114	38638.1301	$-0.118 E-02$
3	3	0	3	1322	38636.6891	$-0.434 E-03$		3615	$1{ }_{1} 5114$	38638.4056	$-0.814 E-03$
3	4	0	4	1423	38636.4955	$0.361 E-04$		616	$1 \begin{array}{llll}1 & 5 & 1 & 5\end{array}$	38638.2957	-0.189E-02
3	6	0	6	625	38636.0958	$-0.668 E-03$		$\begin{array}{llll}7 & 1 & 6\end{array}$	16615	38638.5563	$-0.106 E-02$
3	2	2	1	220	38637.0644	0.776E-04		$\begin{array}{lll}7 & 1 & 7\end{array}$	16616	38638.4592	$-0.210 E-02$
3	2	2	0	221	38637.2082	$0.345 E-05$		8817	1716	38638.7049	$-0.834 E-03$
3	3	2	2	1321	38636.8750	$-0.164 E-03$		388188	$\begin{array}{llll}1 & 7 & 1 & 7\end{array}$	38638.6199	$-0.215 E-02$
3	3	2	1	1322	38637.3369	$0.188 E-03$		3919	$\begin{array}{llll}1 & 8 & 1 & 8\end{array}$	38638.7774	$-0.207 E-02$
3	4	2	3	1422	38636.6420	$-0.562 E-03$		$\begin{array}{lllll}3 & 3 & 3 & 0\end{array}$	$\begin{array}{llll}1 & 2 & 1 & 1\end{array}$	38638.3051	$-0.190 E-03$
3	4	2	2	14233	38637.5015	0.480E-03		$\begin{array}{llll}3 & 3 & 1\end{array}$	$\begin{array}{llll}1 & 2 & 1 & 2\end{array}$	38638.5073	$0.939 E-04$
3	5	2	4	$1 \begin{array}{llll}1 & 5 & 2\end{array}$	38636.4215	-0.187E-03		431	$\begin{array}{llll}1 & 3 & 1 & 2\end{array}$	38638.7303	$-0.109 E-03$
3	5	2	3	1524	38637.6530	0.173E-02		4312	$\begin{array}{llll}1 & 3 & 1 & 3\end{array}$	38638.9844	$-0.340 E-03$
3	6	2	5	$\begin{array}{llll}1 & 6 & 2 & 4\end{array}$	38636.2063	$-0.165 E-03$		$\begin{array}{lll}5 & 3 & 2\end{array}$	$1 \begin{array}{llll}1 & 4 & 1 & 3\end{array}$	38639.2453	$0.123 E-02$
3	6	2	4	$1 \begin{array}{lll}1 & 6 & 2\end{array}$	38637.7922	$-0.415 E-03$		$\begin{array}{llll}3 & 3 & 2 & 1\end{array}$	1220	38638.0700	$0.257 E-03$
3	7	2	5	1726	38637.9322	0.134E-02		$\begin{array}{llll}3 & 3 & 2 & 2\end{array}$	122	38637.9234	$0.190 E-03$
3	4	4	1	14422	38637.3855	$0.396 E-03$		3422	$1 \begin{array}{lll}1 & 3\end{array}$	38638.2675	$-0.118 E-03$
3	5	4	2	$1 \begin{array}{llll}1 & 5 & 2 & 3\end{array}$	38637.4498	0.971E-03		$3 \begin{array}{llll}4 & 2 & 3\end{array}$	$\begin{array}{llll}1 & 3 & 2 & 2\end{array}$	38638.0955	$-0.663 E-04$
3	3	1	2	$\begin{array}{llll}1 & 3 & 3 & 1\end{array}$	38636.7961	$-0.385 E-03$		$3 \begin{array}{llll}3 & 5 & 2 & 3\end{array}$	$1 \begin{array}{llll}1 & 4 & 2 & 2\end{array}$	38638.3972	$-0.196 E-03$
3	4	1	3	$\begin{array}{lllll}1 & 4 & 3 & 2\end{array}$	38636.6243	$-0.393 E-03$		$\begin{array}{llll}3 & 5 & 2 & 4\end{array}$	$\begin{array}{llll}1 & 4 & 2 & 3\end{array}$	38638.2526	$-0.390 E-03$
3	3	3	1	$\begin{array}{llll}1 & 3 & 3 & 0\end{array}$	38637.0316	0.253E-03		$\begin{array}{llll}3 & 6 & 2 & 4\end{array}$	$1 \begin{array}{llll}1 & 5 & 2 & 3\end{array}$	38638.5286	$-0.115 E-02$
3	3	3	0	$1 \begin{array}{llll}1 & 3 & 3 & 1\end{array}$	38637.1478	$0.120 E-03$		36625	15524	38638.4056	$-0.782 E-03$
3	4	3	2	1. 4131	38636.8363	$-0.965 E-04$		3 7	16624	38638.6664	$-0.780 E-04$
3	5	3	3	$1 \begin{array}{llll}1 & 5 & 3 & 2\end{array}$	38636.5820	0.878E-03		3726	16625	38638.5563	$-0.105 E-02$
3	5	3	2	$1 \begin{array}{llll}1 & 5 & 3 & 3\end{array}$	38637.4115	0.132E-02		3826	$1 \begin{array}{llll}1 & 7 & 2 & 5\end{array}$	38638.8018	$-0.147 E-03$
3	5	2	3	$1 \begin{array}{llll}1 & 5 & 4 & 2\end{array}$	38636.5400	$-0.568 E-03$		$\begin{array}{llll}3 & 8 & 2 & 7\end{array}$	$\begin{array}{llll}1 & 7 & 2 & 6\end{array}$	38638.7049	$-0.834 E-03$
3	4	4	1	1440	38636.9840	0.520E-03		3440	$\begin{array}{llll}1 & 3 & 2 & 1\end{array}$	38638.6399	$0.322 E-03$
3	4	4	0	14441	38637.0712	$0.634 E-03$		3 4 441	$\begin{array}{llll}1 & 3 & 2 & 2\end{array}$	38638.8379	$-0.208 E-03$
3	5	4	2	15541	38636.7871	0.512E-03		3 5	14222	38639.0097	0.916E-03
3	5	4	1	15542	38637.1527	0.744E-03		35482	14223	38639.2813	$0.117 E-02$
3	5	5	1	1550	38636.9185	0.111E-02		642	$1 \begin{array}{llll}1 & 5 & 2 & 3\end{array}$	38639.4993	$0.123 E-02$
3	6	5	1	16652	38637.0316	0.109E-03		3431	$1 \begin{array}{llll}1 & 3 & 3 & 0\end{array}$	38638.3505	-0.166E- 03
3	6	6	1	1660	38636.8363	0.169E-02		3432	$\begin{array}{llll}1 & 3 & 3 & 1\end{array}$	38638.2112	$0.106 E-03$
3	6	6	0	1661	38636.8750	0.907E-03		$\begin{array}{lllll}3 & 5 & 3 & 2\end{array}$	$\begin{array}{lllll}1 & 4 & 3 & 1\end{array}$	38638.5627	$0.266 E-03$
3	1	0	1	1000	38837.4404	$-0.344 E-03$		$\begin{array}{llll}3 & 5 & 3 & 3\end{array}$	$1 \begin{array}{llll}1 & 4 & 3 & 2\end{array}$	38638.3822	$0.172 E-03$
3	2	0	2	111001	38637.6249	$-0.203 E-03$		3633	$1 \begin{array}{llll}1 & 5 & 3 & 2\end{array}$	38638.6837	$0.840 E-03$
3	3	0	3	1202	38637.7822	$-0.612 E-03$		$\begin{array}{llll}3 & 6 & 3 & 4\end{array}$	$1 \begin{array}{llll}1 & 5 & 3 & 3\end{array}$	38638.5286	$0.750 E-03$
3	4	0	4	1303	38637.9624	$-0.365 E-03$		37834	1633	38638.7928	0.317E-03
3	5	0	5	1404	38638.1301	-0.119E-02		3735	16634	38638.6664	$0.829 E-04$
3	6	0	6	15505	38638.2957	$-0.189 E-02$		35050	$1 \begin{array}{llll}1 & 4 & 3 & 1\end{array}$	38638.9735	$0.146 E-02$
3	7	0	7	1606	38638.4592	-0.210E-02		$\begin{array}{llll}3 & 6 & 5 & 1\end{array}$	$1 \begin{array}{llll}1 & 5 & 3 & 2\end{array}$	38639.2813	$0.172 E-02$
3	8	0	8	17807	38638.6199	$-0.215 E-02$		$\begin{array}{llll}5 & 4 & 1\end{array}$	440	38638.6078	$0.639 E-03$
3	9	0	9	18808	38638.7774	-0.207E-02		5.42	441	38638.4783	$0.583 E-03$
3	2	2	0	$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$	38637.9672	$-0.744 E-04$		3642	$1 \begin{array}{llll}1 & 5 & 4 & 1\end{array}$	38638.8379	0.208E-02
3	3	2	1	12002	38638.4399	$-0.895 E-04$		36443	15542	38638.6504	$0.227 E-03$
3	4	2	2	$1 \begin{array}{llll}1 & 3 & 0 & 3\end{array}$	38638.9687	0.379E-03		$3 \begin{array}{llll}3 & 7 & 3\end{array}$	1642	38638.9573	$0.584 E-03$
3	5	2	3	14404	38639.4860	0.612E-03		$\begin{array}{lllll}3 & 7 & 4 & 4\end{array}$	1643	38638.7878	0.787E-03
3	2	1	1	11110	38637.7659	$-0.945 E-04$		$\begin{array}{llll}3 & 6 & 5\end{array}$	1551	38638.7245	$0.135 E-02$

References

[1] Wilson, E. B., 1934, Phys. Rev., 45, 706.
[2] Herzberg, G., 1945, Molecular Spectra and Molecular Structure, Vol. II (van Nostrand); 1966, Ibid., Vol. III.
[3] Wilson, E. B., Decius, J. C., and Cross, P. C., 1955, Molecular Vibrations (New York: McGraw-Hill).
[4] Rumpf, K., and Mecke, R., 1939, Z. phys. Chem. B, 44, 299.
[5] Henry, B. R., and Siebrand, W., 1968, J. chem. Phys., 49, 5369; Hayward, R. J., Henry, B. R., and Siebrand, W., 1973, J. molec. Spectrosc., 46, 207.
[6] Kistiakowsky, G. B., and Parmenter, C. S., 1965, J. chem. Phys., 42, 2942.
[7] Bixon, M., and Jortner, J., 1968, J. chem. Phys., 48, 715.
[8] Stockburger, M., 1968, Ber. Bunsenges, phys. Chem., 72, 151.
[9] Parmenter, C. S., and Schuyler, M. W., 1970, J. chem. Phys., 52, 5366.
[10] Kemper, H. F., and Stockburger, M., 1970, J. chem. Phys., 53, 268.
[11] Callomon, J. H., Dunn, T. M., and Mills, I. M., 1966, Phil. Trans. R. Soc., Lond. A, 259, 499, and references therein.
[12] Schubert, U., Riedle, E., and Neusser, H. J., 1989, J. chem. Phys., 90, 5994; Schubert, U., Riedle, E., Neusser, H. J., and Schlag, E. W., 1986, Ibid., 84, 6182, and reference therein.
[13] Burberry, M. S., and Albrecht, A. C., 1979, J. chem. Phys., 70, 147.
[14] Bray, R. G., and Berry, M. J., 1979, J. chem. Phys., 71, 4909.
[15] Quack, M., 1983, Energy Storage and Redistribution in Molecules, edited by J. Hinze (New York: Plenum), p. 493.
[16] Page, R. H., Shen, Y. R., and Lee, Y. T., 1988, J. chem. Phys., 88, 4621, and references therein.
[17] Cabana, A., Bachand, J., and Giguère, J., 1974, Can. J. Phys., 52, 1949.
[18] Kauppinen, J., Jensen, P., and Brodersen, S., 1980, J. molec. Spectrosc., 83, 161.
[19] Lindenmayer, J., Magg, U., and Jones, H., 1988, J. molec. Spectrosc., 128, 172.
[20] Pliva, J., and Pine, A. S., 1982, J. molec. Spectrosc., 93, 209.
[21] Pliva, J., and Johns, J. W. C., 1983, Can. J. Phys., 61, 269.
[22] Pliva, J., and Johns, J. W. C., 1984, J. molec. Spectrosc., 107, 318.
[23] Jensen, H. B., and Brodersen, S., 1979, J. Raman Spectrosc., 8, 103.
[24] Hollinger, A. B., and Welsh, H. L., 1978, Can. J. Phys., 56, 974.
[25] Acker, W. P., Leach, D. H., and Chang, R. K., 1989, Chem. Phys. Lett., 155, 491.
[26] Oldani, M., and Bauder, A., 1984, Chem. Phys. Lett., 108, 7.
[27] Ozkabak, A. G., Goodman, L., and Wiberg, K. B., 1990, J. chem. Phys., 92, 4115.
[28] Sur, A., Knee, J., and Johnson, P. M., 1982, J. chem. Phys., 77, 654.
[29] Hollenstein, H., Piccirillo, S., Quack, M., and Snels, M., 1990, Molec. Phys., 71, 759.
[30] Junttila, M. L., Domenech, J. L., Fraser, G. T., and Pine, A. S., 1991, J. molec. Spectrosc., 147, 513.
[31] Quack, M., and Stockburger, M., 1972, J. molec. Spectrosc., 43, 87.
[32] Bruno, A., Riedle, E., and Neusser, H. J., 1986, Chem. Phys. Lett., 126, 558.
[33] Rosman, R. L., and Rice, S. A., 1986, Chem. Phys. Lett., 132, 351.
[34] Rava, R. P., Philis, J. G., Krogh-Jespersen, K., and Goodman, L., 1983, J. chem. Phys., 79, 4664.
[35] Garforth, F. M., Ingold, C. K., and Poole, H. G., 1948, J. Chem. Soc. (Lond.), 406.
[36] Thakur, S. N., Goodman, L., and Ozkabak, A. G., 1986, J. chem. Phys., 84, 6642.
[37] Hollas, J. M., 1982, High Resolution Spectroscopy (London: Butterworths), chap. 6.
[38] Fuson, N., Garrigou-Lagrange, C., and Josien, M. L., 1960, Spectrochim. Acta, 16, 106.
[39] Luckhaus, D., and Quack, M., 1989, Molec. Phys., 68, 745; 1991, Chem. Phys. Lett., 180, 524.
[40] Riedle, E., and Pliva, J., 1991, Chem. Phys., 152, 375. (This paper still used old, superseded ground state rotational constants for $\mathrm{C}_{6} \mathrm{H}_{6}$, see [29] for the previously published, new data, recently confirmed [30].)
[41] Longuet-Higgins, H. C., 1963, Molec. Phys., 6, 445.
[42] Quack, M., 1977, Molec. Phys., 34, 477.
[43] Amrein, A., Quack, M., and Schmitt, U., 1988, J. phys. Chem., 92, 5455.
[44] Goodman, L., 1992, private communication.
[45] Goodman, L., and Nibu, Y., 1988, Chem. Phys. Letters, 143, 551.
[46] Schmidt, M., Mons, M., Le Calvé, J., Millie, P., and Cossart-Magos, C., 1991, Chem. Phys. Letters, 183, 69.
[47] Gotch, A. J., and Zwier, T. S., 1992, J. chem. Phys., 96, 3388.
[48] Riedle, E., Knittel, Th., Weber, Th., and Neusser, H. J., 1989, J. chem. Phys., 91, 4555.
[49] Weber, Th., Von Bargen, A., Riedle, E., and Neusser, H. J., 1990, J. chem. Phys., 92, 90.
[50] Gerstenkorn, S., and Luc, P., 1978, Atlas du Spectre d'Absorption de la Molecule de l'Iode (Paris: CNRS); a correction of $-0.0056 \mathrm{~cm}^{-1}$ was used according to Gerstenkorn, S., and Luc, P., 1979, Rev. Phys. Appl., 14, 791.
[51] Quack, M., 1990, Ann. Rev. Phys. Chem., 41, 839.
[52] Robey, M. J., and Schlag, E. W., 1977, J. chem. Phys., 67, 2775.

