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A B S T R A C T

In the Ganges-Brahmaputra (G-B) delta, periodic flooding of the land surface during the tidal cycle coupled with
enormous sediment delivery during the monsoon promotes sediment accretion and surface elevation gain
through time. However, over the past several decades, widespread embankment (“polder”) construction in the G-
B tidal delta plain has led to numerous environmental disturbances, including channel siltation and tide range
amplification. While previous research indicates that rates of sediment accretion are relatively high in the G-B
tidal delta plain, it remains unclear if and how surface elevation is maintaining pace with relative sea-level rise
(RSLR) in this region. In this study, we utilize an array of surface elevation tables, sediment traps, and
groundwater piezometers to provide longitudinal trends of sedimentation and elevation dynamics with respect
to local platform elevation and associated hydroperiod. Two hydro-geomorphic settings of the Sundarbans
mangrove forest are compared: higher elevation stream-bank and lower elevation interior. Seasonal measure-
ments over a time span of 5 years reveal that elevation gain is occurring in all settings, with the highest rates
observed at elevated stream-bank zones. Elevation gain occurs primarily in response to sediment accretion, with
possible minor contributions from pore-water storage and swelling of clay minerals during the monsoon season
(i.e., belowground biomass and organic contribution is minimal). As a result, elevation loss and shallow sub-
sidence in the G-B delta is unlikely to be caused by compaction of organic-rich soils, but rather appears to be
controlled by seasonal lowering of the groundwater table and compaction of clay minerals. Rates of surface
elevation gain in the Sundarbans greatly exceed rates of RSLR and more closely follow rates of RSLR augmented
from tide range amplification, indicating that this landscape is adapting to human-induced environmental
change. The proceedings of this study underscore the adaptability of the natural G-B tidal delta plain to local
environmental disturbances, with the caveat that these defenses may be lost to future upstream reductions in
sediment supply.

1. Introduction

The unhindered deposition of detrital and organic material is crucial
for maintaining surface equilibrium in low-lying coastal margins
(Nicholls et al., 2007; Syvitski et al., 2009; Vörösmarty et al., 2009),
especially given the prospect of accelerated eustatic sea-level rise
(Church and White, 2006; Jevrejeva et al., 2008). However, recent
research in a variety of delta systems, including the Mississippi (Meade

and Moody, 2010), Ganges-Brahmaputra (Auerbach et al., 2015a), Nile
(McManus, 2002) and Yellow (Wang et al., 2007), has provided nu-
merous examples of how man-made river control structures stagnate, or
in some cases, completely prevent sediment delivery to the floodplain.
These anthropogenic modifications to the landscape also alter river
channel hydrodynamics, leading to deleterious effects like channel sil-
tation (Wolanski et al., 2001; Wilson et al., 2017) and tide range am-
plification (Pethick and Orford, 2013). While restorative techniques are
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currently being developed and implemented in some coastal commu-
nities (e.g., Mississippi River Delta, Peyronnin et al., 2013), it is well
accepted that the interplay of hydrodynamics, sediment deposition, and
landscape evolution can differ substantially among deltaic systems
(Orton and Reading, 1993; Syvitski and Saito, 2007). Thus, site-specific
consideration of these geomorphic processes, in addition to under-
standing the degree of human-induced modification, is critical for
properly assessing the sustainability of the system and for formulating
restoration initiatives that balance environmental, economic, and hu-
manitarian interests.

Among delta systems worldwide, the Ganges-Brahmaputra (G-B)
delta is considered to be one of the most vulnerable to the effects of
climate change, owing in large part to anthropogenic stressors (Syvitski
et al., 2009; Tessler et al., 2015; Higgins et al., 2018). Indeed, the G-B
delta, with a burgeoning population of ~144 million, is the most po-
pulated delta on Earth (Higgins, 2016). In Bangladesh, which occupies
roughly 70% of the G-B delta, a significant proportion of the population
lives at or near sea level, placing millions of inhabitants at risk of in-
undation from rising sea levels as well as cyclone-induced storm surges.
In an effort to mitigate these environmental hazards, the Bangladesh
government began constructing earthen embankments along channel
margins in low-lying agrarian regions of the country in the 1960s
(Alam, 1996; Allison, 1998; Islam, 2006). Cultivated land within these
embankments, hereafter referred to by the Dutch term “polder,” also
benefitted from augmented rice production due to prevention of saline
water intrusion during the dry season. However, it is now widely re-
cognized that polderization has contributed to a variety of deleterious
outcomes that affect communities both in the vicinity and far from their
construction.

For instance, Pethick and Orford (2013) compared long-term tide
gauge records from three stations located in the Passur Estuary (see
Fig. 1A for location) and found that the rate of change of mean high
water level exceeded that of mean sea level between 1968 and 2011,
indicating that an increase in tidal range had occurred over this time

span (e.g., from ~1.4 to ~2.3m at Khulna). The timing of tidal range
amplification and observation that the magnitude of change was par-
ticularly high near poldered regions suggested that embankment con-
struction and resultant reduction of the tidal prism were the causal
mechanisms. A subsequent study found the closure of 1500 km of tidal
channels reroutes 1.4 km3 of water (Wilson et al., 2017). Accordingly, if
the effects of human alteration are not considered (e.g., tidal amplifi-
cation in this case), rates of sea-level rise can be substantially under-
estimated (Kirwan and Megonigal, 2013; Pethick and Orford, 2013).
These findings underscore the notion that eustatic sea-level rise and
subsidence are not the only processes affecting the surface equilibrium
of coastal systems, as delta floodplains aggrade to mean flood elevation
(Törnqvist and Bridge, 2002) and tidal landscapes build to approxi-
mately mean high water (MHW, Kirwan and Guntenspergen, 2010).

Situated adjacent to the poldered landscape is the Sundarbans
National Park (hereafter referred to as the Sundarbans), a pristine and
expansive mangrove forest that spans ~10,000 km2 (Fig. 1A). The
Sundarbans holds importance for coastal populations as the mangrove
ecosystem offers a wide range of ecological resources (e.g., fish, crabs,
timber, and honey) and provides a natural buffer from storm surges and
tidal bores (e.g., Van Coppenolle et al., 2018). Although it is recognized
that poldered regions exist at an elevation deficit relative to the sur-
rounding natural tidal platforms (Auerbach et al., 2015a; Rogers and
Overeem, 2017), the vulnerability of the natural G-B tidal delta plain
and Sundarbans forest to inundation from sea-level rise is presently
unclear. Loucks et al. (2010) indicate progressive submergence of the
Sundarbans with increasing sea level (“bathtub model”), particularly in
excess of 20 cm of sea-level rise and in low-lying areas of the forest
interior. Conversely, other researchers contend that the Sundarbans is
geomorphically stable based on observed sediment accretion rates that
approximate the local rate of relative sea-level rise (~1 cm yr−1,
Allison and Kepple, 2001; Rogers et al., 2013). Ultimately, however, the
fate of coastal wetlands is controlled by the maintenance of surface
elevation, and numerous studies have shown that shallow subsidence

Fig. 1. (A) Physiographic map of greater Bangladesh with the Sundarbans mangrove forest and poldered areas outlined in green and pink, respectively; (B) rod
surface elevation table (RSET) and hydrologic instrument coverage in the field area. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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and RSLR can outpace gains from accretion (e.g., Cahoon and Hensel,
2006; Rogers et al., 2006; Krauss et al., 2010; Lovelock et al., 2011).
Rates of surface elevation change, in conjunction with the forcing
components (e.g., tidal hydroperiod, sedimentation dynamics), are
therefore critical to accurately assess the sustainability of the G-B tidal
delta plain and other coastal systems worldwide.

This study reports the first longitudinal data (i.e., seasonal mea-
surements over a time span of 5 years) on elevation and sedimentation
dynamics in the natural G-B tidal delta plain, using a modified version
of the widely applied surface elevation table-marker horizon metho-
dology (e.g., Cahoon et al., 2002). Understanding seasonal and inter-
annual changes in surface elevation is vital for informed decisions on
land management (World Bank, 2015), a topic that remains a matter of
debate in coastal Bangladesh (Hossain et al., 2015; Auerbach et al.,
2015b). Thus, the specific objectives of this study are to: (1) document
surface elevation and sediment accretion change in different hydro-
geomorphic landscapes of the natural G-B tidal delta plain, (2) ascertain
the importance of seasonal processes on elevation and accretion dy-
namics, (3) identify surficial and below-ground processes that govern
these changes, and (4) determine whether the landscapes are sustain-
able with respect to sea-level rise and human-induced tidal amplifica-
tion.

2. Study area

Originating in the greater Himalaya, the Ganges and Brahmaputra
rivers flow south through India and coalesce in central Bangladesh.
Water discharge and sediment load of these rivers are strongly regu-
lated by climatic conditions, the most notable of which being the South
Asian monsoon (e.g., Coleman, 1969). From June through September,
southwest winds blow onshore from the Bay of Bengal, triggering per-
sistent rainfall and flooding throughout the Indian subcontinent. The
annual deluge is largely responsible for delivering 1270 km3 of water
and 1060 Mt of sediment to the G-B delta and Indian Ocean each year,
representing one of the largest fluvial sediment loads in the world
(Milliman and Farnsworth, 2011 and references therein). Integrated
satellite imagery analyses and field observations on the inner con-
tinental shelf indicate that the direction of the residual current and
sediment transport is landward and to the west (Barua et al., 1994).
Nearshore waves and tides then advect these turbid waters inland
through a dense network of tidal channels, dispersing sediments
throughout the lower tidal delta plain (Hale et al., 2019a). This sedi-
ment conveyance pathway allows areas that are no longer directly
connected with fluvial point sources to maintain vertical accretion in
accordance with rising sea level (Rogers et al., 2013).

Within the greater G-B delta system, the present study is focused on
the tide-dominated, lower delta plain (range= 2–4m, BIWTA, 2019;
see also Fig. 1A). Located ~150 km west of the river mouth, the G-B
tidal delta plain was the active lobe of the delta prior to periodic,
eastward avulsions of the main-stem Ganges and Brahmaputra rivers
during the late Holocene (Allison et al., 2003). Today, the tidal delta
plain is less connected to fluvial input: the Gorai River is the only source

of fresh water to the region and has decreased in mean discharge by
95% over the past ~50 years partly due to the construction of the
Farakka barrage (Mirza, 1998; EGIS, 2000; Shaha and Cho, 2016) and
partly due to natural infilling of the Ganges-Gorai distributary off-take
(Pethick, 2012; Winterwerp and Giardino, 2012). Like much of Ban-
gladesh, the lower delta plain experiences a tropical monsoonal cli-
mate, which is characterized by mean high and low temperatures of 31
and 22 °C, respectively, and mean annual precipitation in excess of
1800mm. Areas that have not been cleared for agricultural purposes
are dominated by an assemblage of mangroves that includes Sundari
(Heritiera fomes), Gewa (Excoecaria agallocha), Kankra (Bruguiera de-
candra), and Bain (Avicennia marina) species (Giri et al., 2014). Sedi-
ment cores taken across the lower delta plain to ~5m depth reveal that
the shallow subsurface typically consists of fining-upward successions
of mud-rich sand to rooted silts and clays (Allison et al., 2003).

3. Methods

3.1. Surface elevation change

Inter-annual surface elevation change was recorded using an array
of rod surface elevation table (RSET) instruments (Fig. 1B, 2, see also
Tables S1 and S2 in Supplementary Materials for installation details and
measurement dates). During RSET installation, stainless steel rods
(15mm in diameter, 1.22m in length) were driven into the substrate
until refusal and cemented within 10-cm diameter PVC pipes for sta-
bility. The depth of the benchmark ranged from 12.2 to 18.3 m, de-
pending on the local depth of the incompressible substrate (i.e., con-
solidated sand). Following the procedures of Cahoon et al. (2002), nine
measurements of surface elevation were taken at eight different posi-
tions for a total of 72 measurements at each site. During data collection,
any natural obstructions (e.g., tree roots, pneumatophores) or bio-
turbation features (e.g., crab mounds, footprints) that interfered with
the true ground surface were noted, and the associated measurements
were omitted during analysis. RSET stations were established in two
hydro-geomorphic settings in the Sundarbans mangrove forest: 1)
within close proximity (~10m) of a tidal channel and typically slightly
higher elevation, termed “stream-bank (S),” and 2) distal (> 100m)
from any tidal channel and typically at lower platform elevation,
termed “interior (I)” (Fig. 1B; Table 1). RSET instruments were de-
ployed in two phases: RSET-S1 and I1 were installed in May 2014,
while RSET-S2 and I2 were installed in October 2015. Baseline mea-
surements were taken at least a month after deployment to allow for
any disturbance during installation to have recovered. Due to differ-
ences in deployment periods, RSET results reported by hydro-geo-
morphic setting were averaged when instrument deployment periods
coincided (e.g., RSET-S1 and S2 between October 2015 and March
2019) and were reported individually when they did not coincide (e.g.,
RSET-S1 between May 2014 and October 2015).

Table 1
Mean annual rates (± standard error) of surface elevation, vertical accretion measured by sediment tiles (ST) and marker horizons (MH), and shallow subsidence
among study sites. Shallow subsidence values are based on the difference between surface elevation change and vertical accretion from the sediment tile method,
when available. Shallow subsidence errors are propagated from the surface elevation and vertical accretion error component pools.

Station Landscape Record Duration
(yr)

Surface Elevation Change (cm
yr−1)

Vertical Accretion – ST (cm
yr−1)

Vertical Accretion – MH (cm
yr−1)

Shallow Subsidence (cm
yr−1)

RSET-S1 Stream-Bank 5.0 2.59 ± 0.17 3.29 ± 0.29 3.64 ± 1.18 0.70 ± 0.46
RSET-I1 Interior 5.0 1.40 ± 0.14 2.62 ± 0.28 2.78 ± 1.01 1.22 ± 0.42
RSET-I2 Interior 3.5 1.05 ± 0.22 1.76 ± 0.29 2.32 ± 0.73 0.71 ± 0.51
RSET-S2 Stream-Bank 3.5 1.16 ± 0.37 3.00 ± 0.31 3.00 ± 0.57 1.84 ± 0.68
Average Stream-Bank 5.0 2.16 ± 0.26 3.29 ± 0.24 3.32 ± 0.88 1.13 ± 0.50
Average Interior 5.0 1.32 ± 0.17 2.12 ± 0.20 2.55 ± 0.87 0.80 ± 0.37
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3.2. Vertical accretion

Seasonal sediment vertical accretion was directly measured using
two methods: sediment tiles and marker horizons (Fig. 2). As re-
commended by Steiger et al. (2003), these two techniques were used
together to provide quality control in this dynamic depositional setting.
Following the approach of Rogers et al. (2013), four ceramic sediment
tiles (area=100 cm2), were placed on the ground surface in the vici-
nity of each RSET station (Fig. 2). Following a deployment period of
~6months, tiles were excavated and vertical accretion was measured at
two points on each side of the tile for a total of eight measurements per
tile (Fig. 2). The average of all measurements (n=32, when all tiles
were found) was calculated to obtain the amount of seasonal accretion.
During data collection, any evidence of faunal disturbance (e.g., broken
tile, crab mounding) was noted and associated measurements were
omitted during analysis. Tiles were cleared of sediments following each
sampling period and re-deployed in the same location for consistency
and to facilitate identification in subsequent data collection periods.

Sediment accretion as recorded by tiles was supplemented with
artificial marker horizons (Cahoon and Turner, 1989; Fig. 2). Brick dust
or plastic glitter was dispersed on the ground surface in two plots
(area≈ 1m2) situated on different sides of the RSET receiver (Fig. 2,
Table S1). During subsequent field excursions, small cubic cores (~4
cm2) were excavated in undisturbed locations to locate marker horizons
and quantify sediment accretion. The distance from the ground surface
to the marker horizon was calculated as the amount of vertical accre-
tion that had occurred during the deployment period. Additionally, the
vertical distribution and order of markers in the subsurface was noted
and used to assess the degree of bioturbation.

3.3. Shallow subsidence

Comparisons of surface elevation and vertical accretion trends can
be used to quantify shallow subsidence, adapted from Cahoon et al.
(1995) as:

= −SS VA SEC (1)

where SS is calculated shallow subsidence, VA is measured vertical
accretion, and SEC is measured surface elevation change. Positive va-
lues of SS indicate that shallow subsidence occurred at depth between
the ground surface and the depth of refusal for the RSET rods (see
Fig. 2, Table S1), whereas negative values indicate shallow subsurface
expansion has occurred. SS values close to zero indicate that surface
elevation change is occurring primarily as a function of sediment ac-
cretion, with negligible shallow subsidence or expansion (see Cahoon,
2015).

3.4. Platform flooding

Local surface and groundwater hydrodynamic data were obtained
from Schlumberger Diver CTD (conductivity, temperature, and pres-
sure) and Onset U20L-01 HOBO (water pressure) instruments attached
to a dock piling in a nearby tidal channel (n=1; surface water) and
emplaced in piezometers on the platforms near the RSET instruments
(n= 4; groundwater piezometers screened from the surface to a depth
of 2m) (Figs. 1B, 2). The instruments logged data every 10min to
document water level, water temperature, and electrical conductivity (a
proxy for salinity) changes over tidal and seasonal time scales. Man-
grove platform flooding events were identified in the hydrograph data
by a rapid increase in water pressure followed by a gradual decline in
pressure as waters receded from the platform. Seasonal duration of

Fig. 2. Schematic diagram (not to scale) of methods employed in this study (modified from Cahoon et al., 2002). RSETs, marker horizons (either brick dust or plastic
glitter), sediment tiles, and piezometers were deployed within the Sundarbans forest.
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platform inundation (i.e., hydroperiod) was quantified at two locations
(RSET-S1 and RSET-I1) by tabulating time periods when water levels
met or exceeded the level of the ground surface, as established by
Auerbach et al. (2015a) in the EGM96 datum. Other locations (RSET-I2
and RSET-S2) were excluded from hydroperiod analysis due to: (i) short
time periods of deployment, and (ii) missing or compromised data from
instrument vandalism.

3.5. Statistical analyses and parameter comparisons

To evaluate whether seasonal conditions (e.g., monsoonal flooding)
significantly impacted surface elevation change and sediment accretion,
we compared seasonal changes in these parameters using two-tailed t-
tests assuming equal variances. In addition, relationships between: (1)
hydroperiod and sediment accretion; (2) groundwater level and surface
elevation change; and (3) groundwater level and shallow subsidence
were assessed for significance using regression analysis. In all cases, a
significance level of α=0.05 was used to reject the null hypothesis.
Linear trends of surface elevation change were directly compared to
local rates of relative sea-level rise (0.9 cm yr−1) to assess whether the
investigated landscapes are keeping pace with sea-level change.
Relative sea-level rise combines the effects of eustatic sea-level rise at
the northern Bay of Bengal (0.3 cm yr−1, Cazenave et al., 2008) and
total subsidence (i.e., shallow and deep components, 0.6 cm yr−1, Khan
and Islam, 2008; Hanebuth et al., 2013; Grall et al., 2018). No statistical
methods were applied to these comparisons as rates of surface elevation
change must simply meet or exceed those of sea-level rise to be con-
sidered sustainable (e.g., Morris et al., 2002).

4. Results

4.1. Surface elevation change

Among the two hydro-geomorphic settings, the highest rates of
surface elevation change were observed at stream-bank sites, where
elevation increased over time at a rate of 2.16 ± 0.26 cm yr−1

(Fig. 3A; Table 1) and greatly exceeded the rate of relative sea-level rise
(0.9 cm yr−1). Surface elevation increased at these locations during
both the monsoon and dry season, though positive elevation increments
were significantly higher during the monsoon season (Fig. 3A; Table 2).
Sundarbans interior sites displayed a slightly lower rate of surface
elevation gain, collectively increasing at a rate of 1.32 ± 0.17 cm yr−1

(Fig. 3A; Table 1), which also exceeded the rate of relative sea-level rise
(0.9 cm yr−1). A strong seasonal signal was apparent in this hydro-
geomorphic zone: surface elevation change was positive during the
monsoon season but often negative during the dry season (Fig. 3A;
Table 2). Over time, however, elevation gain during the monsoon
season exceeded elevation loss during the dry season, resulting in an
overall positive trend (Fig. 3A).

4.2. Vertical accretion

Rates of vertical accretion as determined by the sediment tile
method varied considerably depending on the hydro-geomorphic set-
ting (Fig. 3B). For instance, accretion rates at stream-bank sites
(3.29 ± 0.24 cm yr−1) were approximately 55% higher than those at
interior sites (2.12 ± 0.20 cm yr−1) (Table 1). This discrepancy was
almost exclusively derived from differences in monsoon season accre-
tion as dry season accretion was similar at stream-bank
(1.00 ± 0.27 cm) and interior (0.91 ± 0.26 cm) settings (Table 2).
Seasonal differences in vertical accretion were significant at Sundar-
bans stream-bank settings, but not at Sundarbans interior locations
(Table 2). Rates of vertical accretion as measured by the marker horizon
method were generally higher than those measured by sediment tiles
(Table 1). However the horizons, differentiated by color, were often
found out of sequence in the subsurface, indicating error associated

with bioturbation.

4.3. Shallow subsidence

Over the entire dataset, vertical accretion exceeded surface eleva-
tion gain at both stream-bank and interior settings, indicating that
shallow subsidence occurred between the ground surface and RSET
benchmark (Fig. 3C; Table 1). Rates of shallow subsidence at stream-

Fig. 3. Inter-annual change in (A) surface elevation, (B) vertical accretion, and
(C) shallow subsidence grouped by hydro-geomorphic setting. Note the change
in scale for (C) and that values of negative shallow subsidence represent ex-
pansion in the shallow subsurface (i.e., clay expansion, belowground biomass
production, etc.). Values are the average of two sites and represent longitudinal
change relative to the baseline measurement. Error bars are the standard error
for all measurements.
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bank sites (1.13 ± 0.50 cm yr−1) were ~34% higher than those of
interior sites (0.80 ± 0.37 cm yr−1, Table 1). Seasonal patterns of
shallow subsidence were similar for both hydro-geomorphic settings,
exhibiting greater subsidence during the dry season than during the
monsoon season (Fig. 3C). There were, however, a couple instances
during the monsoon season when surface elevation gain exceeded
vertical accretion, indicating shallow subsurface expansion (e.g., be-
tween May and October 2016, Fig. 3C).

4.4. Platform flooding

Surface hydrologic data recorded within the tidal channel at
Suterkhali dock (see Fig. 1B for location) reveal that the local area is
characterized by a semidiurnal tidal regime with a tide range of ~3 to
5m (Fig. 4A). A water level setup of ~0.5 to 0.7 m is observed during
the monsoon season (Fig. 4A), as documented in other coastal regions
of the G-B delta (Barua, 1990). GPS and theodolite surveys undertaken
by Auerbach et al. (2015a) determined the average elevation of the
Sundarbans relative to pertinent tidal frame constituents, including
mean high water (MHW), mean sea level (MSL), and mean low water
(MLW), within the EGM96 datum (Fig. 4A). Comparing the average
elevation of the Sundarbans, +2.6m relative to EGM96, to the Suter-
khali tide data suggests that during the monsoon season, flooding of the
mangrove platform should occur during every spring high tide up to
~0.5 m depth and during a few isolated neap high tides (Fig. 4A). This
approach also suggests that platform inundation during the dry season
should occur during new moon spring tides, with little flooding other-
wise (Fig. 4A).

The hydrodynamics from piezometers located on the Sundarbans
mangrove platform display weekly, large-scale fluctuations in water
level due to neap-spring tidal cycles (Fig. 4B). When placed within the
context of the mangrove platform ground surface, this data indicates
when the platform is inundated and the depth of inundation, as well as
the shallow groundwater table dynamics (Fig. 4B, C). Piezometer re-
sults generally substantiate tide gauge approximations of inundation
and indicate that during the monsoon season platform inundation oc-
curs during the majority of spring high tides and occasionally during
neap high tides (Fig. 4B). In contrast, platform flooding during the dry
season is relatively scarce, occurring only during some new moon
spring tides and exhibiting evidence of negligible inundation for several
weeks to months at a time (e.g., between Dec 16 and Feb 17, Fig. 4B, C).
Shallow groundwater table dynamics are controlled by neap-spring
cyclicity and seasonal conditions (Fig. 4B). During the monsoon season,
the groundwater table typically lowers 0.3–0.5 m relative to the plat-
form surface (Fig. 4B). Groundwater fluctuations are more dramatic
during the dry season, when lowering of the groundwater table in ex-
cess of 1m was documented on multiple occasions (e.g., between Jan
and Feb 17, Fig. 4B). Over the cumulative dataset, stream-bank site
RSET-S1 documented greater hydroperiod in comparison to interior site
RSET-I1, though there were multiple months when the hydroperiod of
RSET-I1 exceeded that of RSET-S1 (e.g., Nov 15, Fig. 4C).

5. Discussion

5.1. Surface controls on landscape dynamics

Rates of surface elevation change and sediment accretion from this
study, which represent the first coordinated measurements in the G-B
tidal delta plain, were in general much greater than those reported in
other mangrove systems. In a review of mangrove settings across the
worldwide RSET network, Sasmito et al. (2016) found that for pristine
mangrove sites with> 1 year of data (n= 45), surface elevation and
vertical accretion rates averaged 0.07 and 0.55 cm yr−1, respectively.
Corresponding measurements from this study, averaging 1.74 and
2.71 cm yr−1 for our study sites in the natural Sundarbans mangrove
forest (Table 1), are up to an order of magnitude greater than theTa
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worldwide average, which underscores the amount of sediment dis-
charged from the G-B river mouth, as well as the efficiency of the
system to redistribute these sediments to the tidal delta plain
(~150–200 km from the river mouth, sensu Rogers et al., 2013; Wilson
and Goodbred, 2015). To our knowledge, the only location with com-
parably high rates of surface elevation change is at Sanjiang in
Dongzhaiguang Bay, China, where elevation increased at an average
rate of 1.75 cm yr−1 (Fu et al., 2018). The mangrove forests of the
Sundarbans and Sanjiang share commonality as mineral-rich, riverine
systems that are situated in the vicinity of large population centers
(Rogers et al., 2013; Fu et al., 2018). Owing to a general lack of organic
matter accumulation in this type of environment (e.g., Rovai et al.,
2018), mineral-rich, riverine mangrove systems are heavily reliant on
the continued supply of upstream sediments in order to maintain po-
sitive surface elevation change over time.

Vertical accretion measurements using the marker horizon method
in this study generally yielded higher values than analogous measure-
ments using sediment tiles (Table 1). Based on the observation that
marker horizons were often found out of sequence in the subsurface, we
attribute this difference to the presence of post-depositional mixing
(i.e., bioturbation). Mangrove crabs (Scylla serrata) are abundant in the
Sundarbans forest and commonly burrow during low tide (Alberts-

Hubatsch et al., 2016), likely altering the subsurface particle distribu-
tion. On the other hand, sediment tiles provide a physical barrier that
prevents mixing of older sediments, likely yielding more accurate ver-
tical accretion and shallow subsidence rates (Table 1). Nevertheless, the
sediment accretion rates derived from both techniques in this study
may be overestimated as short-term additive measurements typically
yield higher values than a single long-term measurement that in-
corporates sediment dewatering and compaction (e.g., Steiger et al.,
2003). Therefore, the rates of shallow subsidence reported here
(Fig. 3C, Table 1) should be viewed as upper estimates for this region.
Additionally, we acknowledge that due to the relatively short duration
of this study (5 years), our rates of sediment accretion will naturally be
higher than those obtained using techniques that investigate longer
time scales (e.g., decadal to centennial sedimentation rates from short-
lived radioisotopes, e.g., Allison and Kepple, 2001) because of com-
paction and differences in the time scales involved (Sadler, 1981), and
thus should not be directly compared.

In the G-B tidal delta plain, we find that the patterns of surface
elevation change reflect hydrodynamic processes that are in turn gov-
erned by seasonal climatic conditions. During the summer monsoon,
elevated suspended sediment concentrations in the tidal channels
(Barua, 1990; Hale et al., 2019a; Hale et al., 2019b) combined with

Fig. 4. (A) Water level measurements at Suterkhali dock (see Fig. 1B) including local tidal frame constituents. Note that during the monsoon season (time periods
shaded in grey) there is a coastal set-up of water regionally (after Barua, 1990), which raises mean water level by ~50–70 cm. Abbreviations: MHW- mean high
water; MSL - mean sea level; MLW - mean low water (after Auerbach et al., 2015a). (B) Hydrographs for shallow piezometers near RSET-S1 and RSET-I1, located
within the Sundarbans (see Fig. 1B), illustrating fluctuations in water level related to neap-spring cycles during the dry (white) and monsoon (grey) seasons. The
dashed line represents the overbank flooding threshold (i.e., mangrove platform elevation), which is only surpassed ~every 2 weeks during the monsoon season
spring tides. Note that during neap tides, groundwater levels lower as much as ~1.25m, exacerbated during the dry season when the platform hydroperiod is reduced
by ~62% (see also Fig. 5). (C) Monthly tidal hydroperiod of the mangrove platform at RSET-S1 and RSET-I1 locations.
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increased frequency of platform inundation (from an average of
85.2 ± 42.9 h to 229.2 ± 95.9 h; Figs. 4C, 5) promote surface ele-
vation gain, principally through the accumulation of newly deposited
sediment (sensu Marion et al., 2009). Indeed, we found that the dura-
tion of inundation of the platform (i.e., hydroperiod) strongly controls
the magnitude of sediment accretion as presented earlier: a significant
positive relationship exists between these two parameters (r2= 0.70,
P < 0.0001; Fig. 5). Accordingly, elevation gains were significantly
greater during the monsoon season as compared to during the dry
season at all hydro-geomorphic settings (Table 2). We note however,
similar to other wetland settings, seasonal differences in sediment ac-
cretion were site-specific (Table 2). Sundarbans stream-bank locations
exhibited seasonal differences in accretion, likely reflecting greater
access to the sediment-rich waters of the monsoon season (Hale et al.,
2019a). On the other hand, Sundarbans interior sites did not exhibit
seasonal differences in sediment accretion, suggesting that part of the
monsoon sediment load was sequestered on or near the channel banks
and did not reach the interior of the mangrove platform (sensu Rogers
and Goodbred, 2014).

Mangrove vegetation density likely also plays a role in the capture
and deposition of sediments carried in suspension by tidal waters.
Hydrodynamic field and modeling studies in a number of mangrove
forests indicate that the interaction between tidal currents and sub-
aerial vegetation (e.g., pneumatophores) produces zones of stagnant
water in which suspended sediments preferentially settle (Furukawa
and Wolanski, 1996; Furukawa et al., 1997; Krauss et al., 2003;
Anthony, 2004; Van Santen et al., 2007). Correspondingly, it is possible
that a portion of the total sediment load carried by flood tides is de-
posited within close proximity of the channel, effectively diluting the
tidal water as it propagates towards the interior of the platform (e.g.,
Furukawa and Wolanski, 1996). Hale et al. (2019b) documented a 15%
reduction in peak suspended sediment concentration from stream-bank
(RSET-S2 in this study) to interior sites (RSET-I2 in this study) in the
monsoon season, corroborating the notion of progressive sediment ex-
traction from tidal waters. Generally higher than expected rates of se-
diment accretion at Sundarbans sites during the dry season could be
attributed to the facilitated deposition of silt- and clay-size particles via
electrochemical flocculation (e.g., Winterwerp and van Kesteren, 2004)
when waters are relatively saline during this time of the year (up to 25
ppt, Shaha and Cho, 2016). Silt and clay are the dominant grain sizes in
the Sundarbans mangrove forest, together accounting for> 85% of the
near-surface sediments (depth= 10–50 cm) in the study area (Allison
et al., 2003).

5.2. Subsurface controls on landscape dynamics

It is well established that vertical accretion is a strong influence on
surface elevation change in wetlands and deltaic settings (e.g., Nyman
et al., 2006; Neubauer, 2008), however it is not the only parameter that
controls displacement of the land surface through time. As seen by
differences in surface elevation and vertical accretion (cf. Fig. 3A and B;
Table 1), a portion of the absolute elevation gain can be lost to below-
ground processes and resultant shallow subsidence. In general, a variety
of subsurface processes in wetlands contribute to shallow subsidence,
including groundwater flux (Cahoon et al., 1995; Whelan et al., 2005,
Rogers and Saintilan, 2008), sediment compaction (Knott et al., 1987;
Day et al., 1999; Lovelock et al., 2011), clay abundance and mineralogy
(Schafer and Singer, 1976; Karathanasis and Hajek, 1985; Nelson and
Miller, 1992), and organic matter production and decomposition
(Cahoon et al., 2003; McKee et al., 2007). These studies show that the
relative importance of these factors is highly location-specific; there-
fore, careful consideration of each of these processes is critical when
characterizing landscape evolution.

The presence of both subsidence and expansion of the substrate in
this study area using RSET methods (Fig. 3C) coupled with groundwater
piezometer data (Fig. 4B) suggest that seasonal fluctuations in shallow
groundwater level (< 2 m depth) influence landscape dynamics in the
natural G-B tidal delta plain. This is demonstrated through a positive
and significant relationship between deviations in groundwater level
and surface elevation change (r2= 0.76, P < 0.0001; Fig. 6A).

Fig. 5. Relationship between observed vertical accretion on tiles and calculated
seasonal inundation for RSET-S1 and RSET-I1 locations in the Sundarbans
mangrove forest.

Fig. 6. Seasonal relationships between (A) surface elevation change and (B)
shallow subsidence with normalized differences in groundwater level from
RSET and piezometers located within the Sundarbans mangrove forest.
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Similarly, a negative and significant relationship is observed between
deviations in groundwater level and shallow subsidence and expansion
(r2= 0.33, P=0.0077; Fig. 6B). These seasonal relationships among
groundwater level, surface elevation change, and shallow subsidence
suggest that more frequent flooding during the monsoon promotes
groundwater recharge and soil swelling (e.g., Harvey et al., 2006),
contributing to surface elevation gain (Fig. 6A) and substrate expansion
(Fig. 6B). Conversely, less frequent flooding coupled with enhanced
evapotranspiration rates during the dry season (e.g., Brammer, 2004)
leads to soil desiccation, shallow subsidence (Figs. 3C, 6B), and surface
elevation loss (Fig. 6A). The swelling and shrinking of near-surface
sediments in response to volumetric changes in pore-water is a well-
documented phenomenon (e.g., Nuttle and Hemand, 1988; Nuttle et al.,
1990; Whelan et al., 2005) that has been reported in other locations
with seasonal climates. For instance, work in the mangrove forests of
Everglades National Park, Florida, USA demonstrated that monthly
changes in surface elevation were strongly correlated with coincident
variations in groundwater level (Whelan et al., 2005).

It is also well recognized that clay mineralogy is a primary control
on the shrink and swell potential of sediments and soils (e.g., Schafer
and Singer, 1976; Karathanasis and Hajek, 1985). Sediments in south-
west Bangladesh contain a clay mineral assemblage that is primarily
composed of illite (~60%), with lesser amounts of smectite, chlorite,
and kaolinite (~10–15% each, Allison et al., 2003). Among clay mi-
neral suites, those with high illite and minor smectite components have
a “moderate to high” shrink and swell potential (Nelson and Miller,
1992), which along with lowering of the groundwater table docu-
mented here (Figs. 4B, 6), may explain the pronounced seasonal dif-
ferences of elevation change and sediment accretion within the Sun-
darbans (Fig. 3A, B, Table 2).

Previous laboratory and field studies in coastal settings suggest that
substrate compaction is strongly controlled by sediment organic con-
tent, wherein organic-rich sediments like peat are more compressible
and prone to compaction than inorganic sediments like detrital sand
and silt (e.g., Knott et al., 1987; van Asselen et al., 2009). The surface
sediments (i.e., 0–2 cm depth) of the Sundarbans mangrove forest are
very low in organic content, ranging between 2.9 and 3.8% by mass
(Rogers et al., 2013), and this trend continues to> 1m depth (Allison
et al., 2003; Bomer et al., 2019). Based on these observations it follows
that organic compaction should not compose a large proportion of the
shallow subsidence. We thus postulate that in the case of the mineral-
rich G-B tidal delta plain, bulk grain size and water and clay content of
the shallow stratigraphy are more likely to control the magnitude of
compaction. We also note it is likely that compaction-induced sub-
sidence also occurs below the RSET benchmark where overburden
pressure is greater (i.e., “deep subsidence,” Cahoon et al., 1995),
however, due to the depth limitations of RSET investigations, the re-
lative contribution of deep subsidence is not quantified here (requires
other methods such as GPS or stratigraphic age control, see Steckler
et al., 2010; Grall et al., 2018). Recent geodetic reports have provided
insights on total subsidence (i.e., shallow plus deep components) in the
eastern part of the G-B delta, demonstrating that rates of total sub-
sidence range from 0 to 1.8 cm yr−1 (Higgins et al., 2014). In this study,
rates of shallow subsidence across all locations ranged from 0.70 to
1.84 cm yr−1 (Table 1), which when compared to the rates of total
subsidence from Higgins et al. (2014), suggests that the majority of
compaction in this delta occurs in the uppermost ~10 to 20m of the
subsurface. This notion is consistent with the findings of Törnqvist et al.
(2008), who show that in the Mississippi River Delta much of the
subsidence results from the compaction of relatively shallow (~15m
depth), Holocene-age sediments.

5.3. Sea-level rise and landscape vulnerability

The long-term sustainability of mangrove forests and other low-
lying coastal landscapes requires that gains in surface elevation must

meet or exceed rates of sea-level rise (e.g., Woodroffe et al., 2016). Our
data indicate that the natural G-B tidal delta plain is much less vul-
nerable to sea level-induced submergence than previously thought (e.g.,
Houghton, 2005; Loucks et al., 2010). We document that surface ele-
vation gain at stream-bank (2.16 ± 0.26 cm yr−1) and interior sites
(1.32 ± 0.17 cm yr−1) in the Sundarbans greatly outpaces the rate of
relative sea-level rise (0.9 cm yr−1) (Fig. 7). Furthermore, it seems ap-
parent that relative sea-level rise plus the effects of tidal amplification
(which combined=1.2–1.6 cm yr−1, hereafter referred to as “effective
sea-level rise,” sensu Pethick and Orford, 2013) is a more dominant
control on the mangrove surface geomorphic evolution. The results of
this study indicate that the surface elevation of the Sundarbans man-
grove platform (both stream-bank and interior settings) is increasing in
response to changes in the level of mean high water (MHW) instead of
eustatic sea-level rise (Fig. 7). This finding highlights the adaptability of
mangrove ecosystems to local environmental disturbances (e.g., Alongi,
2008), in this case to tidal amplification and associated increase in
platform flooding from embankment-induced channel constriction
(Pethick and Orford, 2013). This adaptability mechanism is reflected in
the geomorphic stability of the Sundarbans mangrove forest. For in-
stance, remote sensing research across the Sundarbans indicates little
conversion of interior mangrove platforms to open water over the past
30 years (Giri et al., 2007), most likely a result of effective sediment
distribution through the interior of the tidal delta plain by smaller-
order tidal creeks (Rogers et al., 2013; Hale et al., 2019b). These large-
scale observations, along with findings from the present study, con-
tradict oversimplified models of land loss which put forth the notion
that low elevation areas, such as the Sundarbans interior sites, passively
submerge in response to rising sea levels (Houghton, 2005; Loucks
et al., 2010).

Although the proceedings of this study represent an important first
step in quantifying elevation and sedimentation dynamics in the
Sundarbans and G-B tidal delta plain, we acknowledge that our results
may not be representative of the entire Sundarbans mangrove forest.
For example, changes in surface elevation near the Bay of Bengal may
be less influenced by tidal amplification (quantified as 0.3 cm yr−1 in
this area by Pethick and Orford, 2013) and more influenced by higher
subsidence rates as a result of thicker sediment loading (quantified as
0.5 cm yr−1 in this area by Grall et al., 2018). Similarly, the western
portion of the Sundarbans forest likely experiences less deposition as a

Fig. 7. Linear trajectories for surface elevation change at hydro-geomorphic
settings compared to upper and lower estimates of sea-level rise: relative sea-
level rise (RSLR) integrates the effects of eustatic sea-level rise and subsidence
(Cazenave et al., 2008; Khan and Islam, 2008; Hanebuth et al., 2013; Grall
et al., 2018) whereas effective sea-level rise includes the effects of RSLR plus
tidal range amplification from embankment construction (Pethick and Orford,
2013). “D” and “M” refer to dry and monsoon seasons while the numbers
correspond to the year (e.g., D14=dry season of 2014).
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result of the increased distance from the G-B river mouth (Flood et al.,
2018). Differences in elevation and sedimentation dynamics between
the Sundarbans and human-impacted regions of the G-B tidal delta
plain are likely to be even more pronounced due to extensive anthro-
pogenic modification of the landscape and tidal channel network
(Auerbach et al., 2015a; Wilson et al., 2017). We hypothesize that such
landscapes are not adapting sufficiently to changes in sea-level rise
based on reports of polders being situated ~1m below mean high water
(Auerbach et al., 2015a). However, we stress that further research is
necessary to constrain the spectrum of these parameters, and the re-
sulting geomorphic expression, across the greater G-B tidal delta plain.

Although natural, unmodified areas of the G-B delta appear to be
currently sustainable as presented here, major concerns for the long-
term future of the delta are still present, particularly with respect to
reductions in sediment supply from upstream sources. Over the next
30 years, India’s National River Linking Project is expected to add 43
dams and 29 link canals to the country’s infrastructure, leading to
substantial downstream reductions in suspended sediment load for the
Ganges and Brahmaputra rivers, estimated at 39–75% and 9–25%, re-
spectively (Higgins et al., 2018). If such upstream blockages and asso-
ciated reductions in sediment load are realized, aggradation rates
would decrease delta-wide (Higgins et al., 2018), weakening the nat-
ural defense of the system to relative and effective sea-level rise, and
ultimately render the G-B delta more vulnerable to the effects of global
climate change. Finally, it should be stressed that in the G-B tidal delta
plain and possibly other coastal systems, effective sea-level rise is the
main hydrodynamic parameter that places human livelihood at risk,
given that the land surface relative to MHW is ultimately what dictates
flood risk and associated damage to crops and infrastructure. Future
studies should consider the range of anthropogenic practices involved
and constrain the magnitude of their influence on depositional condi-
tions to properly evaluate landscape evolution.

6. Conclusions

In the G-B tidal delta plain, surface elevation change is controlled by
a variety of factors that occur both at the surface (e.g., sediment de-
position, tidal flooding) and in the shallow subsurface (e.g., seasonal
groundwater fluctuations, hydro-expansion and contraction of clay
minerals, sediment compaction). Newly available inter-annual records
of surface elevation, vertical accretion, and shallow subsidence in the
G-B tidal delta plain reveal much needed insights on the sustainability
of this region. In this study, we document that in the natural stream-
bank and interior settings of the Sundarbans mangrove forest, which
remain hydrologically connected to sediment-laden tidal waters, ele-
vation gain is occurring at rates of 2.16 ± 0.26 cm yr−1 and
1.32 ± 0.17 cm yr−1, respectively. These rates of elevation gain ex-
ceed that of relative sea-level rise (0.9 cm yr−1) and more closely follow
the range of effective sea-level rise (1.2–1.6 cm yr−1, Pethick and
Orford 2013), suggesting that the natural land surface is maintaining
equilibrium with changes in mean high water. Overall, the findings of
this research highlight the adaptability and responsiveness of the nat-
ural G-B tidal delta plain to maintain positive surface elevation in the
face of locally accelerated sea-level rise. However, the long-term fate of
the delta hinges upon the continued supply of sediments from upstream
source areas. Future infrastructure projects that re-route water and
sediment conveyance pathways away from the lower G-B delta in-
creases the vulnerability of this low-lying coastal region to sea-level rise
and submergence.
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