86,018 research outputs found

    Experimental making in multi-disciplinary research

    Get PDF
    For the past 3 years, Graham Whiteley has been using making in a project to develop a mechanical analogy for the human skeletal arm to inform the future development of prostheses and other artefacts. Other aspects of the work such as use of drawings and the use of a principled approach in the absence of concrete design goals have been documented elsewhere, this paper concentrates on the central role of making in the process. The paper will discuss the role of making in multi-disciplinary research; craft skills and resources appropriate to each stage of a practice centred research project in this area; the use of models in an iterative experimental investigation and the value of models in eliciting knowledge from a broad community of interested parties and experts.</p

    First make something – principled, creative design as a tool for multi-disciplinary research in clinical engineering

    Get PDF
    Design provides a set of tools for exploring our world and these can give very different insights from the tools of the natural scientist or social scientist. The Art and Design Research Centre at Sheffield Hallam University is developing the use of creative practice at the centre of multi-disciplinary research and has demonstrated that this approach can bring significant results in areas of research which are more usually thought of thought of as science or engineering. This paper describes a 3-year project which has provided completely new ideas for the design of artificial limbs based on close analogies with human anatomy. The project was intended to look at very long-term developments but has also resulted in ideas for today's products and has changed the thinking of both clinicians and manufacturers. Investigative methods included iterative cycles of creative development and reflection; work with users including the production of video material to stimulate their thinking beyond the state of the art; and both qualitative and quantitative evaluation of design outcomes with scientific and clinical specialists.</p

    Understanding Homeowners' Renovation Decisions::Findings of the VERD Project

    Get PDF
    The VERD Study: In October 2011, the VERD project team at the University of East Anglia began a two-year research project investigating homeowners’ renovation decisions, funded by the UK Energy Research Centre (UKERC). This report and public conference summarises the findings, revealing why homeowners renovate and why they decide to improve their home energy efficiency

    The Influence of Nuclear Composition on the Electron Fraction in the Post-Core-Bounce Supernova Environment

    Get PDF
    We study the early evolution of the electron fraction (or, alternatively, the neutron-to-proton ratio) in the region above the hot proto-neutron star formed after a supernova explosion. We study the way in which the electron fraction in this environment is set by a competition between lepton (electron, positron, neutrino, and antineutrino) capture processes on free neutrons and protons and nuclei. Our calculations take explicit account of the effect of nuclear composition changes, such as formation of alpha particles (the alpha effect) and the shifting of nuclear abundances in nuclear statistical equilibrium associated with cooling in near-adiabatic outflow. We take detailed account of the process of weak interaction freeze-out in conjunction with these nuclear composition changes. Our detailed treatment shows that the alpha effect can cause significant increases in the electron fraction, while neutrino and antineutrino capture on heavy nuclei tends to have a buffering effect on this quantity. We also examine the effect on weak rates and the electron fraction of fluctuations in time in the neutrino and antineutrino energy spectra arising from hydrodynamic waves. Our analysis is guided by the Mayle & Wilson supernova code numerical results for the neutrino energy spectra and density and velocity profiles.Comment: 38 pages, AAS LaTeX, 8 figure

    Insights into antibody catalysis: Structure of an oxygenation catalyst at 1.9-Ă… resolution

    Get PDF
    The x-ray crystal structures of the sulfide oxidase antibody 28B4 and of antibody 28B4 complexed with hapten have been solved at 2.2-Ă… and 1.9-Ă… resolution, respectively. To our knowledge, these structures are the highest resolution catalytic antibody structures to date and provide insight into the molecular mechanism of this antibody-catalyzed monooxygenation reaction. Specifically, the data suggest that entropic restriction plays a fundamental role in catalysis through the precise alignment of the thioether substrate and oxidant. The antibody active site also stabilizes developing charge on both sulfur and periodate in the transition state via cation-pi and electrostatic interactions, respectively. In addition to demonstrating that the active site of antibody 28B4 does indeed reflect the mechanistic information programmed in the aminophosphonic acid hapten, these high-resolution structures provide a basis for enhancing turnover rates through mutagenesis and improved hapten design

    Exact renormalization group equations and the field theoretical approach to critical phenomena

    Get PDF
    After a brief presentation of the exact renormalization group equation, we illustrate how the field theoretical (perturbative) approach to critical phenomena takes place in the more general Wilson (nonperturbative) approach. Notions such as the continuum limit and the renormalizability and the presence of singularities in the perturbative series are discussed.Comment: 15 pages, 7 figures, to appear in the Proceedings of the 2nd Conference on the Exact Renormalization Group, Rome 200

    Explosive Ballooning Flux Tubes in Tokamaks

    Full text link
    Tokamak stability to, potentially explosive, `ballooning' displacements of elliptical magnetic flux tubes is examined in large aspect ratio equilibrium. Above a critical pressure gradient the energy stored in the plasma may be lowered by finite (but not infinitesimal) displacements of such tubes (metastability). Above a higher pressure gradient, the linear stability boundary, such tubes are linearly and nonlinearly unstable. The flux tube displacement can be of the order of the pressure gradient scale length. Plasma transport from displaced flux tubes may result in rapid loss of confinement.Comment: 4 pages, 6 figure

    Terrain analysis using radar shape-from-shading

    Get PDF
    This paper develops a maximum a posteriori (MAP) probability estimation framework for shape-from-shading (SFS) from synthetic aperture radar (SAR) images. The aim is to use this method to reconstruct surface topography from a single radar image of relatively complex terrain. Our MAP framework makes explicit how the recovery of local surface orientation depends on the whereabouts of terrain edge features and the available radar reflectance information. To apply the resulting process to real world radar data, we require probabilistic models for the appearance of terrain features and the relationship between the orientation of surface normals and the radar reflectance. We show that the SAR data can be modeled using a Rayleigh-Bessel distribution and use this distribution to develop a maximum likelihood algorithm for detecting and labeling terrain edge features. Moreover, we show how robust statistics can be used to estimate the characteristic parameters of this distribution. We also develop an empirical model for the SAR reflectance function. Using the reflectance model, we perform Lambertian correction so that a conventional SFS algorithm can be applied to the radar data. The initial surface normal direction is constrained to point in the direction of the nearest ridge or ravine feature. Each surface normal must fall within a conical envelope whose axis is in the direction of the radar illuminant. The extent of the envelope depends on the corrected radar reflectance and the variance of the radar signal statistics. We explore various ways of smoothing the field of surface normals using robust statistics. Finally, we show how to reconstruct the terrain surface from the smoothed field of surface normal vectors. The proposed algorithm is applied to various SAR data sets containing relatively complex terrain structure

    Chemical kinetic modeling of benzene and toluene oxidation behind shock waves

    Get PDF
    The oxidation of stoichiometric mixtures of benzene and toluene behind incident shock waves was studied for a temperature range from 1700 to 2800 K and a pressure range from 1.1 to 1.7 atm. The concentration of CO and CO2 produced were measured as well as the product of the oxygen atom and carbon monoxide concentrations. Comparisons between the benzene experimental data and results calculated by use of a reaction mechanism published in the open literature were carried out. With some additional reactions and changes in rate constants to reflect the pressure-temperature range of the experimental data, a good agreement was achieved between computed and experimental results. A reaction mechanism was developed for toluene oxidation based on analogous rate steps from the benzene mechanism. Measurements of NOx levels in an actual flame device, a jet-stirred combustor, were reproduced successfully by use of the reaction mechanism developed from the shock-tube experiments on toluene. These experimental measurements of NOx levels were reproduced from a computer simulation of a jet-stirred combustor

    Exploring the cytotoxic mechanisms of Pediocin PA-1 towards HeLa and HT29 cells by comparison to known bacteriocins: Microcin E492, enterocin heterodimer and Divercin V41.

    Get PDF
    The purpose of this study was to explore potential mechanisms of cytotoxicity towards HeLa and HT29 cells displayed by Pediocin PA-1. We did this by carrying out sequence alignments and 3D modelling of related bacteriocins which have been studied in greater detail: Microcin E492, Enterocin AB heterodimer and Divercin V41. Microcin E492 interacts with Toll-Like Receptor 4 in order to activate an apoptosis reaction, sequence alignment showed a high homology between Pediocin PA-1 and Microcin E492 whereas 3D modelling showed Pediocin PA-1 interacting with TLR-4 in a way reminiscent of Microcin E492. Furthermore, Pediocin PA-1 had the highest homology with the Enterocin heterodimer, particularly chain A; Enterocin has also shown to cause an apoptotic response in cancer cells. Based on this we are led to strongly believe Pediocin PA-1 interacts with TLRs in order to cause cell death. If this is the case, it would explain the difference in cytotoxicity towards HeLa over HT29 cells, due to difference in expression of particular TLRs. Overall, we believe Pediocin PA-1 exhibits a dual effect which is dose dependant, like that of Microcin. Unfortunately, due to the COVID-19 pandemic, we were unable to carry out experiments in the lab, and the unavailability of important data meant we were unable to provide and validate out solid conclusions, but rather suggestions. However, bioinformatic analysis is still able to provide information regarding structure and sequence analysis to draw plausible and evidence based conclusions. We have been able to highlight interesting findings and how these could be translated into future research and therapeutics in order to improve the quality of treatment and life of cancer patients
    • …
    corecore