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SUMMARY 

The ox ida t ion  of s to i ch iomet r i c  mixtures of benzene and to luene  behind 
i n c i d e n t  shock waves w a s  s tud ied  f o r  a temperature range from 1700 to 2800 K 
and a pressure range from 1.1 to 1.7 atm. The concent ra t ions  of CO and C02 
produced were measured as w e l l  as t h e  product of t h e  oxygen atom and carbon 
monoxide concent ra t ions .  Canparisons between t h e  benzene experimental  d a t a  
and resu l t s  c a l c u l a t e d  by u s e  of a r e a c t i o n  mechanism published i n  t h e  open 
l i t e r a t u r e  were carried out.  With some a d d i t i o n a l  r e a c t i o n s  and changes i n  
ra te  cons t an t s  to r e f l e c t  t h e  pressure-temperature range of t h e  experimental  
da t a ,  a good agreement was achieved between computed and experimental  r e s u l t s .  
A r e a c t i o n  mechanj.sm w a s  developed f o r  to luene  ox ida t ion  based on analogous 
rate steps from t h e  benzene mechanism. For both benzene and to luene ,  t h e  
computed concen t r a t ions  of CO were s l i g h t l y  h igher  than t h e  exper imenta l ly  
measured d a t a  and t h e  concent ra t ions  of CO2 cmputed  were s l i g h t l y  lower 
than t h e  measured values.  Induction t i m e s  determined i n  t h e  l i t e ra ture  
were reproduced very w e l l  by u s e  of t h e  r e a c t i o n  mechanisms developed i n  
t h i s  paper. 

Measurements of Nox l e v e l s  i n  an actual  flame device,  a j e t - s t i r r e d  com- 
bus tor ,  were reproduced success fu l ly  with t h e  reaction mechanism developed 
from the  shock-tube experiments on toluene. These experimental  measurements 
of NOx l e v e l s  were reproduced from a computer s imula t ion  of a jet-stirred 
combustor. 

INTRODUCTION 

With the  inc reas ing  demands f o r  products der ived  from crude o i l ,  includ- 
ing j e t  f u e l s ,  it seems i n e v i t a b l e  t h a t  f u t u r e  f u e l s  ( inc luding  those der ived  
from s y n t h e t i c  crude o i l s )  w i l l  conta in  h igher  percentages of aromatic com- 
pounds ( r e f .  1 ) .  I t  has been demonstrated t h a t  increased amounts of aromatic 
compounds i n  f u e l s  can inf luence  both the  canbustion c h a r a c t e r i s t i c s  and 
pollutant-emission c h a r a c t e r i s t i c s  of t h e  f u e l .  Combustor s t u d i e s  wi th  var ious  
f u e l s  and f u e l  mixtures to which a romat ic  compounds have been added have shown 
t h a t  i nc reases  i n  aromatic con ten t  can r e s u l t  i n  increased l e v e l s  of flame 
r a d i a t i o n ,  smke, and n i t rogen  oxides  ( r e f s .  2 to 4 ) .  A fundamental problem 
i n  modeling any p r a c t i c a l  combustion system, such as an a i r c r a f t  gas t u r b i n e ,  
is to account for t h e  combustion and pol lu tan t - format ion  processes. If aro- 
matic compounds become a s i g n i f i c a n t  percentage of t h e  f u e l  composition, a need 
w i l l  a r ise  to model t h e  canbustion of t h e  aromatics, or a t  least  i n  some manner 
t o  account for t h e i r  p resence  i n  t h e  f u e l .  

Even though much work  has been done i n  t h e  area of hydrocarbon canbus t ion  
k i n e t i c s ,  most of t h e  e f f o r t  has focused on t h e  combustion k i n e t i c s  and mech- 
anisms of p a r a f f i n i c  and unsa tura ted  hydrocarbons, such as ace ty l ene  and 
ethylene.  Very l i t t l e  research  has been done to model t h e  combustion of aro- 
matic hydrocarbons. An understanding of t h e  r e a c t i o n  processes which occur 



dur ing  the  combustion of aromatics is e s s e n t i a l  if m o d e l s  f o r  f u e l s  wi th  h igh  
aromatic content  are to be assembled. The purpose of t h i s  s tudy  was to develop 
and exper imenta l ly  v a l i d a t e  r e a c t i o n  mechanisms t h a t  can  describe t h e  combus- 
t i o n  of two r e p r e s e n t a t i v e  aromatic canpounds - benzene and a s u b s t i t u t e d  aro- 
m a t  i c, to1 uene . 

Most of the  k i n e t i c  s t u d i e s  of aromatic cornpounds repor ted  have concen- 
t r a t e d  on t h e  i g n i t i o n  c h a r a c t e r i s t i c s .  F u j i i  and coworkers ( r e f s .  5 to 7) 
and Miyama ( r e f s .  8 and 9) have s tud ied  the  i g n i t i o n  c h a r a c t e r i s t i c s  of benzene 
and var ious  s u b s t i t u t e d  aromatic hydrocarbons behind shock waves. Although t h e  
main i n t e r e s t  i n  t hese  . s t u d i e s  w a s  t he  measurement of t h e  i g n i t i o n  charac te r -  
istics, F u j i i  and coworkers ( r e f s .  5 to 7) attempted to assemble a chemical 
k i n e t i c  mechanism t h a t  would describe the  py ro lys i s  of benzene and the  i n i t i a l  
s t a g e s  of t h e  ox ida t ion  process. The mechanism provided a reasonable  descrip- 
t i o n  of the  i g n i t i o n  c h a r a c t e r i s t i c s  (ref. 7) but  d i d  no t  account f o r  t h e  sub- 
sequent  ox ida t ion  of a l l  t h e  r e a c t i o n  products. One s i g n i f i c a n t  aspect of t h e  
proposed mechanism which provided the  primary l i n k  between the  py ro lys i s  pro- 
cesses and t h e  formation of carbon monoxide w a s  t h e  direct a t tack  on t h e  
phenyl radical C6H5 by molecular oxygen. Th i s  r e a c t i o n  was needed, according 
to  F u j i i ,  to  expla in  t h e  experimental  r e s u l t s .  

Resu l t s  of an experimental  and a n a l y t i c a l  s tudy of benzene and to luene  
combustion behind shock waves over a temperature range of 1700 to 2800 K and 
pressures  from 1.1 to 1.7 atm are presented i n  t h i s  paper. I n  t h i s  s tudy,  
t h e  concent ra t ions  of carbon monoxide, carbon dioxide,  and t h e  product of t h e  
concent ra t ion  of the  oxygen atom and carbon monoxide were monitored with 
i n f r a r e d  and u l t r a v i o l e t  d e t e c t i o n  systems. The experimental  r e su l t s  were 
used to  h e l p  guide t h e  formulat ion of combustion mechanisms for benzene and 
toluene.  The benzene combustion mechanism proposed by F u j i i  was used as a 
s t a r t i n g  po in t  i n  the  mechanism development. The ign i t ion- t ime data reported 
by Miyama were also used to h e l p  formulate  t h e  m o d e l .  

Cvib 

hv 

k 

SYMBOLS 

molar concent ra t ions  of CO and C02, mol/cm3 

concent ra t ion  product of atomic oxygen and carbon monoxide, 
(m0i/~m3 2 

v i b r a t i o n a l  h e a t  capac i ty  

energy of u l t r a v i o l e t  r a d i a t i o n  

rate c o e f f i c i e n t ,  s-1 f o r  unimolecular r eac t ions ,  cm3/mol-s f o r  
bimolecular r eac t ions ,  cm6/mo12-s  f o r  termolecular  r e a c t i o n s  

kcn 

M 

rate c o e f f i c i e n t  a t  high p res su re  l i m i t ,  s-' 

third-body c o l l i s i o n  p a r t n e r  
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P 

R 

S 

T 

Tm 

ti 

t i [  021 0 

t m 

x 

pres su re ,  atm (1 atm = 101.3  kPa) 

un ive r sa l  gas  cons t an t  

number of e f f e c t i v e  oscillators 

a b s o l u t e  temperature, K 

temperature c o r r e c t i o n  a t  t h e  occurrence  of t h e  LO1 [CO] p e a k  

induct ion  t i m e ,  s 

experimental  c o r r e l a t i o n  func t ion  f o r  induct ion  t i m e  (from r e f .  8) 

reaction t i m e ,  Ps 

c o l l i s i o n  e f f i c i e n c y  f a c t o r  

EXPERIMENTAL APPARATUS AND MEASUREMENT 

A l l  t h e  experiments were c a r r i e d  o u t  behind i n c i d e n t  shock waves i n  a 
s t a i n l e s s - s t e e l  shock tube wi th  an i n s i d e  diameter of 8.9 cm. The tes t  s e c t i o n  
was 671 c m  long with an observa t ion  s t a t i o n  located 625 cm from t h e  diaphragm 
loca t ion .  The test  s e c t i o n  and t h e  monitoring-equipment arrangement are shown 
i n  r e fe rence  10. The c a l i b r a t i o n  procedure f o r  t h e  monitoring equipment and 
t h e  technique used to  e x t r a c t  t h e  q u a n t i t a t i v e  resul ts  are a lso presented  i n  
r e fe rence  10 ,  along with information as t o  t h e  t i m e  response and accuracy of 
t he  measurement system. B r i e f l y ,  t h e  t i m e  cons t an t  for the  i n f r a r e d  measure- 
ment system was about 3 Us and t h e  t i m e  cons t an t  f o r  t h e  u l t r a v i o l e t  measure- 
ment system w a s  about 2 Ps. 

The t e s t  gas  mixture of to luene ,  oxygen, and argon was prepared by a com- 
mercial vendor. The mixture w a s  made from research-pure grades of oxygen and 
argon and spectroanalyzed-grade toluene. The r e s u l t i n g  mixture w a s  0.223 per- 
c e n t  toluene, 2.220 percent  oxygen, and 97.557 percent  argon by volume. The 
mixture w a s  drawn from t h e  mixing bottle over t h e  recommended p res su re  range 
and analyzed for t h e  constancy of t h e  to luene  f r a c t i o n .  I t  w a s  v e r i f i e d  t h a t  
t h e  to luene  mole f r a c t i o n  d i d  remain c o n s t a n t  down to  t h e  minimum recommended 
tank pressure. 

The benzene test  gas  mixture w a s  prepared on s i t e  from research-pure 
argon and oxygen and spectroanalyzed-grade benzene. The r e s u l t i n g  mixture w a s  
0.0250 p e r c e n t  benzene, 1.875 pe rcen t  oxygen, and 97.875 p e r c e n t  argon by vol- 
ume. The benzene f r a c t i o n  remained cons t an t  f r a n  t h e  maximum tank p res su re  t o  
t h e  minimum tank pressure .  

The shock tube  w a s  f i l l e d  to a pressure of 40 mm of mercury with t h e  test  
gases  f o r  a l l  t h e  experiments. 
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EXPERIMENTAL RESULTS AND DATA ANALYSIS 

An example of t h e  data obta ined  by shock hea t ing  t h e  benzene-oxygen-argon 
mixture is shown i n  f i g u r e  1.  The curves r ep resen t  t h e  oscilloscopic d i s p l a y  

.- I ................... 
~ 

* .  Increasing t ime (1  p s l  point)  ............... ...... .........- ............... - ....... - .......................... - ..... > ..i* - 
Shock arr ival  

Figure 1.- Typical emission p r o f i l e s  f o r  CO, C02, and LO1 [COl. 

of vol tage  output  of t h e  101 [CO] , CO, and C02 op t i ca l -de t ec t ion  equipnent  
as changes occurred with t i m e .  The o s c i l l o s c o p i c  d i s p l a y s  obta ined  from shock 
hea t ing  the toluene-oxygen-argon mixture were very  similar. The same f e a t u r e s  
were repor ted  i n  r e fe rences  10  to  1 2  f o r  the  hydrocarbons methane, ace ty lene ,  
e thylene ,  and propane. As with t h e  o the r  hydrocarbons, benzene and to luene  
dur ing  combustion exh ib i t ed  infrared-emission p r o f i l e s  for CO2 a t  4.3 Pm and 
CO a t  5.0 pm. These p r o f i l e s  rose r a p i d l y  immediately a f t e r  passage of t h e  
shock wave and then curved to  an almost cons t an t  l e v e l .  The emission from 

' I  
wavelength of 3700 A. The knee of t he  infrared-emissi:n p r o f i l e s  occurred 
s l i g h t l y  a f t e r  t h e  peak of t h e  sp ike  observed a t  3700 A. I n  most cases, t h e  L 

CO and C02 infrared-emission p r o f i l e s  rose quick ly  to an  almost cons tan t  l e v e l .  

exc i t ed  C02, t h e  r e s u l t  of t h e  r eac t ion  0 + C O +  C02 f hv, was observed a t  a 

The 3700-A emission p r o f i l e  was analyzed by t h e  method o u t l i n e d  i n  r e fe r -  
ence 5. 
nescent  r eac t ion  0 + CO + C02 + hv. 
r eac t ion  was assumed to occur a t  the  same t i m e  as the  maximum for the  emis- 

The e n t i r e  post-spike emission w a s  assumed to be from the  chemilumi- 
The maximum i n  t h e  emission of t h i s  
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I 

sion sp ike .  The va lue  a t  t h e  maximum f o r  t h e  emission from t h e  r e a c t i o n  
0 + CO + CO2 + hv w a s  determined by ex t r apo la t ing  the  slope of t h e  post-spike 
emission i n t o  t h e  s p i k e  region. This va lue  was used to  c a l c u l a t e  t h e  concen- 
t r a t i o n  product  [O] [CO]. The va lues  of [O] [CO] c a l c u l a t e d  i n  t h i s  manner are 
s h m n  i n  t a b l e s  I and 11. 

To conver t  t h e  observed i n f r a r e d  emissions to molar concent ra t ion  u n i t s ,  
t h e  temperature a t  t h e  maximum f o r  t h e  [ O ]  [CO] p r o f i l e  m u s t  be used. This was 
t h e  approach used i n  r e fe rences  1 0  to 1 2  to  reduce t h e  test  da ta .  The temper- 
ature p red ic t ed  by t h e  k i n e t i c  model a t  t h e  peak 101 [CO] value  w a s  used to 
e x t r a c t  [CO1 and [CO2] values  from t h e  c a l i b r a t i o n  curves presented  i n  refer- 
ence 10. The j u s t i f i c a t i o n  fo r  using t h i s  va lue  Tm w a s  p resented  i n  r e fe r -  
ence 11. The molar concent ra t ions  of CO and CO2 are also shown i n  t a b l e s  I 
and 11. 

COMPARISON OF THEORETICAL CALCULATIONS W I T H  EXPERIMENTAL FESULTS 

Computer M o d e l  

The a n a l y t i c a l  model used i n  t h e  parametric s tudy involved one-dimensional 
flow behind an i n c i d e n t  shock wave with f i n i t e - r a t e  chemical r e a c t i o n s  and 

ence 13; however, a modified form of t h e  program descr ibed  i n  r e fe rence  1 4  w a s  
used t o  make t he  c a l c u l a t i o n s .  This  program was used to  avoid time-consuming 
c a l c u l a t i o n s  caused by s t i f f n e s s  problems a s soc ia t ed  with systems conta in ing  
many chemical spec ies .  The thermochemical d a t a  of JANAF ( r e f .  15) were used 
when given. For those  compounds which had no thermochemical d a t a  i n  JANAF, t h e  
thermochemical d a t a  publ ished i n  re ference  1 6  were used i n  t h e  cu rve - f i t t ed  
form of r e fe rence  17. 

, boundary-layer growth. The bas i c  computer program is descr ibed  i n  r e fe r -  

The computer model opera ted  i n  a constant-volume manner w a s  used to simu- 
l a t e  t h e  cond i t ions  behind a r e f l e c t e d  shock wave. The f i n i t e - r a t e  chemical 
r eac t ion  mechanism w a s  input  for comparison with ign i t ion-de lay  d a t a  a v a i l a b l e  
i n  t h e  l i t e r a tu re .  

Proposed React ion Mechanisms 

The benzene and to luene  ox ida t ion  mechanisms repor ted  here  were based, t o  
a l a r g e  e x t e n t ,  on t h e  benzene p y r o l y s i s  and ox ida t ion  scheme proposed by F u j i i  
and Asaba ( r e f s .  5 and 6). However, a d d i t i o n a l  r e a c t i o n s  were incorporated 

some p y r o l y s i s  products.  React ions analogous with t h e  benzene mechanism were 
used to assemble t h e  to luene  p y r o l y s i s  and ox ida t ion  scheme. 

< i n t o  t h e  benzene ox ida t ion  scheme which d e s c r i k  the  subsequent ox ida t ion  of 

The r e a c t i o n  mechanism f o r  benzene ox ida t ion  is presented  i n  t a b l e  I11 and 
t h e  r eac t ion  mechanism f o r  to luene  ox ida t ion  is presented  i n  t a b l e  IV. The rate 
c o e f f i c i e n t s  l i s t e d  are those  which apply  to t h e  breakdown of t h e  p a r e n t  ben- 
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zene or toluene molecule. The r eac t ions  and r a t e  c o e f f i c i e n t s  for oxida t ion  of 
the  shorter-chain hydrocarbon products used i n  t h i s  s tudy  - methane, e thylene ,  
and ace ty lene  - are l i s t e d  i n  re ferences  1 1  and 12, respec t ive ly .  (The methyl- 
r a d i c a l  ox ida t ion  r a t e  c o e f f i c i e n t s  appeared i n  t h e  errata f o r  r e f .  12.) The 
r eac t ions  governing the  oxida t ion  of t h e  p a r e n t  molecule, either benzene or 
toluene, are discussed i n  the following sec t ions .  Where poss ib l e ,  t he  rate 
c o e f f i c i e n t s  l i s ted  i n  re ferences  5 and 6 were.used; however, because of t h e  
d i f f e r e n c e s  i n  temperatures and pressures of t h i s  s tudy  from those  i n  the 
re ferences ,  a t h e o r e t i c a l  approach was used to adapt  t h e  rate c o e f f i c i e n t s  
to  t h e  experimental  condi t ions.  

+ 
The rate c o e f f i c i e n t s  l i s t e d  i n  t a b l e s  I11 and I V  for unimolecular reac- 

However, when c a l c u l a t i o n s  were per- t i o n s  are the  high pressure va lues  k,. 
formed a t  var ious temperatures and pressures, an adjusted ra te  c o e f f i c i e n t  
was used. The ad jus t ed  rate c o e f f i c i e n t  was c a l c u l a t e d  from t h e  r e l a t i o n  

k 
k = -kw. The ra t io  k/k, was c a l c u l a t e d  by use  of the  theory of R i c e -  

Ramsperger-Kassel (RRK) i n  re ference  18. The use  of the RRK theory r e q u i r e s  
es t imates  of t h e  number of e f f e c t i v e  oscillators s and t h e  c o l l i s i o n  effi- 
ciency f a c t o r  1. Benson ( r e f .  19) and Golden e t  al. ( r e f .  20) recommend tha t  
s be set  equal  to  Gib/Rr where Cvib is t h e  v i b r a t i o n a l  heat capac i ty  of 
t h e  r e a c t a n t  and R is the gas constant .  The parameter is gene ra l ly  
between about  0.05 and 0.9 (ref. 21) , so a value of 0.1 was selected. For 
given va lues  of s, 1, and km, t he  ratio k / k w  w a s  c a l c u l a t e d  by use of a 
method similar to t h e  one descr ibed i n  r e fe rence  22. 

ko3 

R e s u l t s  of Benzene S t u d i e s  

The f i r s t  c a l c u l a t i o n s  employed the  rate cons t an t s  e x a c t l y  as l i s t e d  i n  
re ferences  5 and 6 to c a l c u l a t e  the  induction-time data presented i n  refer- 
ence 8 .  I t  quick ly  became obvious t h a t  t h e  r a t e  c o e f f i c i e n t s  would have to be 
a l t e r e d  to e f f e c t  any reasonable comparison. Figure 2 gives  the  induct ion 
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I I I I I J 
7 8 9 

Figure 2.- Values of induct ion  times c a l c u l a t e d  wi th  benzene r e a c t i o n  mechanism 
(data symbols) canpared with va lues  from t i [ 0 2 I o  = 1.0 x exp 21 414/T 
(sol id  curve) .  Function t i [ 0 2 I 0  and benzene parameters from r e f e r e n c e  8. 
Pressure,  6.0 atm. 
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times for benzene from re fe rence  8 compared with t h e  r e su l t s  computed by u s e  
of what was bel ieved to  be the  best set  of rate c o e f f i c i e n t s .  Figure 3 g ives  

0 Experimental  
- Calculated 

1 0 - l ~  

3 4 5 6 

d I T ,  K - l  

Figure 3 . -  Comparison of ca l cu la t ed  and experimental ly  measured 
va lues  of LO1 IC01 f o r  cambustion of benzene. 

t h e  experimental  va lues  of [01 [COl from t h i s  s tudy  and t h e  r e s u l t s  computed by 
u s e  of t he  bes t  r a t e -coe f f i c i en t  data l i s ted  i n  table 111. 
molar concent ra t ions  measured i n  t h i s  experimental  s tudy  f o r  t h e  same computer 
s imula t ion  are shown i n  f i g u r e  4. The induction-time comparison was very good, 
as was t h e  [O] [CO] comparison. The comparison was no t  q u i t e  as good for [CO] 
and [COz]. The cmputed [C021 resul ts  were l o w  by about a f a c t o r  of 2,  while  
t h e  computed [COl was 20 to 30 percen t  higher  than t h e  measured values.  To 
achieve t h i s  canparison,  t he  r a t e  c o e f f i c i e n t s  f o r  r eac t ions  ( 3 ) ,  ( 7 ) ,  ( 8 ) ,  
(9), ( l o ) ,  and (1 1 )  were e i t h e r  altered from t h e  values  i n  re ferences  5 and 6 
or the  r eac t ions  were added to  reduce fragments of t he  hydrocarbon to a more 
reasonable  f i n a l  product. These r eac t ions  a r e  discussed ind iv idua l ly  a s  to t h e  
reasons f o r  t he  change or add i t ion  t o  t h e  o v e r a l l  mechanism. 

The CO and C02 

Reaction ( 3 ) . -  The rate of t h i s  r eac t ion  has a s i g n i f i c a n t  e f f e c t  
on the c a l c u l a t e d  induct ion  t i m e s .  The r a t e  c o e f f i c i e n t  
k3 = 4.0  x l o J 4  exp(-8000/RT), reported by F u j i i  and Asaba, gave induct ion 
t i m e s  t h a t  were much g rea t e r  than the  experimental  values.  The express ion  
l i s ted  i n  t a b l e  111, toge ther  w i t h  t h e  ad jus ted  r a t e  c o e f f i c i e n t  f o r  reac- 
t i o n  ( 7 ) ,  gave a more reasonable d e s c r i p t i o n  of t he  experimental  induct ion  
t i m e s  and concentrat ions.  

.- The rate of t h i s  r eac t ion  has  a s i g n i f i c a n t  e f f e c t  on t h e  
[C021, [O] [COl p r o f i l e s ,  as w e l l  as on t h e  induct ion times. 
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Figure 4. - Comparison of experimental ly  measured and calculated values  
of molar concent ra t ions  of CO and C02  fran benzene canbustion. 

F u j i i  and Asaba used t h e  rate c o e f f i c i e n t  6.3 x 10”. To reproduce t h e  experi-  
mental d a t a  repor ted  by F u j i i  and Asaba and t h e  results repor ted  he re ,  t h e  rate 
c o e f f i c i e n t  given i n  t a b l e  I11 w a s  required.  

Reactions. (8) ,. -(.9), and (1 1 ) .- The rate c o e f f i c i e n t s  l i s t e d  f o r  t hese  
r e a c t i o n s  were es t imated  by s e t t i n g  t h e  a c t i v a t i o n  energy equal  to  t h e  hea t  of 
r eac t ion  AH a t  1500 K. The preexponent ia l  factor f o r  r eac t ions  ( 8 )  , (9) ,  
and (1 1 )  was set  a t  l o 1 *  s-’ , which is common for t h e  unimolecular decomposi- 
t i o n  of f r e e  r ad ica l s .  (See Benson and O ’ N e a l ,  r e f .  23.) 

Reaction ( l o ) . -  This  r e a c t i o n  desc r ibes  t h e  h ighly  exothermic a t tack  by 
atomic oxygen on d iace ty lene .  For t h i s  reason, a preexponent ia l  factor f o r  
t h i s  r e a c t i o n  w a s  ass igned to be l o T 3  m3/ml-s wi th  an  a c t i v a t i o n  energy 
of zero. This  reaction, coupled with r eac t ion  (111, w a s  needed to provide a 
reasonable  reproduct ion of t h e  measured LO1 [CO] values .  n 

Resu l t s  of Toluene S tud ie s  

The r e a c t i o n s  needed to g i v e  reasonable  comparisons wi th  t h e  experimental  
induct ion  t i m e s  and emission measurements f o r  to luene  are l i s t e d  i n  t a b l e  IV. 
React ions ( 2 ) ,  ( 3 ) ,  and ( 1 1 )  are taken from re fe rences  23, 24, and 6, respec- 
t i v e l y .  The r e a c t i o n s  which are added from “Present  study“ are based on anal-  
ogous r e a c t i o n s  i n  t h e  benzene ox ida t ion  scheme. The r e a c t i o n  mechanism of 
t a b l e  I V  gave good agreement for canparisons of c a l c u l a t e d  induct ion  t i m e s  wi th  
t i m e s  measured exper imenta l ly  i n  r e fe rence  8. (See f i g .  5.) React ion (8) of 
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t h i s  r eac t ion  mechanism had t h e  most effect on induct ion t i m e .  The comparison 
of c a l c u l a t e d  [O] [COl with the  experimental ly  measured 101 [COl is shown i n  f ig -  
u re  6. Again, t h e  agreement was very good. The CO and C02 molar concentra- 

0 Experimental 
- - Calculated 

3 4 5 6 

lo4/ T, K-'  

Figure 6.- Canparison of experimental  and c a l c u l a t e d  values  of LO1 [CO] 
from toluene combustion. 

t i o n s  a r e  shown i n  f i g u r e  7. Here the  same de f i c i ency  i n  the  camparison of 
ca l cu la t ed  and experimental ly  measured r e su l t s  w a s  observed fo r  toluene as f o r  
benzene. 
t h e  experimental  values ,  and ca l cu la t ed  [COl w a s  h igh  by about 20 percent .  
Obviously, a r eac t ion  c r e a t i n g  032 and reducing CO is needed, but  obvious 
r e a c t i o n s  oxid iz ing  CO to  C02 do not  produce t h e  des i r ed  r e s u l t s .  I n  any 
event ,  t he  r eac t ion  mechanism does seem t o  produce a reasonable d e s c r i p t i o n  
of t h e  oxida t ion  process .  The ind iv idua l  r eac t ions  are discussed as to why 
they were selected and what e f f e c t  is produced. 

The [C021 c a l c u l a t e d  values  were lower by almost a f a c t o r  of 2 than 

Reaction ( l ) . -  The ra te  c o e f f i c i e n t  fo r  t h i s  r e a c t i o n  was est imated by 
s e t t i n g  the  a c t i v a t i o n  energy equa l  to the  h e a t  of r eac t ion  AH a t  1500 K. 
The preexponent ia l  f a c t o r  w a s  set a t  1OI4 m3/ml-s. This r a t e  c o e f f i c i e n t  
probably r ep resen t s  an upper l i m i t .  

-- React ions (4),- (5), and ( 6 ) . -  The rate c o e f f i c i e n t s  f o r  t hese  r e a c t i o n s  
were e s t i m a t e T b y  u s e  of H i r sch fe lde r ' s  r u l e  ( r e f .  18) to determine the  a c t i -  
va t ion  energy. The preexponent ia l  f a c t o r s  were set a t  values  comparable to  
t h e  preexponent ia l  f a c t o r s  f o r  analogous r eac t ions  i n  t h e  benzene oxida t ion  
mechanism. 

Reaction (7).- This  r eac t ion  desc r ibes  t h e  attack of atomic oxygen on 
t h e  CH2 group a t tached  to t h e  r ing .  Because t h e  r e a c t i o n  is very exothermic, 
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Figure  7 . -  Comparison of experimental  and c a l c u l a t e d  va lues  of molar 
concen t r a t ion  of CO and C02 from to luene  combustion. 

a ze ro  a c t i v a t i o n  energy was assumed. The preexponent ia l  f a c t o r  w a s  se t  a t  
1 O I 3  cm3/mol-s .  
of l o T 2  m3/ml-s d i d  n o t  s i g n i f i c a n t l y  a f f e c t  t h e  c a l c u l a t e d  r e s u l t s .  

Subsequent parametric s t u d i e s  showed t h a t  a lower va lue  

Reaction (8).- This  r e a c t i o n  was included i n  t h e  mechanism as analogous 
to  r e a c t i o n  (7)  i n  t h e  benzene ox ida t ion  mechanism. This r e a c t i o n  w a s  needed 
i n  t h e  mechanism to reasonably reproduce t h e  experimental  induct ion  times. 
The r a t e  c o e f f i c i e n t  l i s ted  i n  tab le  IV gave t h e  best f i t  between t h e  calcu- 
la ted and experimental  i nduc t ion  times. 

Reactions (9)  , - - ( lo ) ,  (12), and (13) .- These r e a c t i o n s  describe t h e  
u n i m l e c u l a r  d e c m p o s i t i o n  of hydrocarbon radicals. 
were set  equa l  to t h e  h e a t  of r e a c t i o n  AH a t  1500 K ,  and t h e  preexponent ia l  
f a c t o r s  were set a t  va lues  comparable with those  f o r  similar r eac t ions .  (See 
Benson and O ' N e a l ,  r e f .  23.) 

The a c t i v a t i o n  e n e r g i e s  

Reaction (14b.- This  r e a c t i o n  is h ighly  exothermic, and t h e r e f o r e  an  
a c t i v a t i o n  energy of zero  w a s  assigned. The preexponent ia l  factor w a s  set a t  
1 . 0  x 1013 cm3/mol-s. 

The spread i n  r e a c t i o n  t i m e  measured a f t e r  t h e  passage of an i n c i d e n t  

The band r e p r e s e n t s  t h e  unce r t a in ty  i n  t h e  l o c a t i o n  of t h e  [O] [CO] 
shock wave is shown f o r  benzene and toluene i n  f i g u r e s  8 ( a )  and 8 ( b ) ,  respec- 
t i v e l y .  
s p i k e  beneath t h e  i n i t i a l  hydrocarbon s p i k e .  The spread  i n  r e a c t i o n  t i m e  
varies from as l i t t l e  as 5 ps a t  t h e  h igh  temperatures to  as much as 1 5  ps a t  

1 2  
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F igure  8.- Comparison of r e a c t i o n  t i m e  to maximum [Ol [CO] va lue  for  
experimental  and c a l c u l a t e d  cases behind i n c i d e n t  shock waves. 

t h e  l o w  temperatures. The symbols on t h e  f i g u r e  r e p r e s e n t  t h e  c a l c u l a t e d  t i m e  
to  t h e  p e a k  of t h e  [O] [CO] profile. The c a l c u l a t e d  va lues  l i e  wi th in  t h e  band 
measured experimentally.  

I t  was ev iden t  f r a n  viewing t h e  o s c i l l o g r a p h i c  recording of t h e  emission 

This  p e c u l i a r i t y  w a s  noted i n  previous s t u d i e s  of e thylene ,  acety- 
r a d i a t i o n  d e t e c t o r s  t h a t  v e r y  erratic behavior a t  temperatures b e l o w  1800 K 
occurred. 
l ene ,  and propane, but a t  much lower temperatures. This behavior w a s  observed 
as s h a r p  rises and drops noted from each of t h e  emission-radiation-detector 
ou tputs .  The reason for this behavior is n o t  known. 
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APPLICATION OF TOLUENE COMBUSTION MECHANISM TO STUDIES OF 

NITRIC OXIDE FORMATION 

T o  assess t h e  a b i l i t y  of a chemical k i n e t i c  mechanism developed from 
shock-tube s t u d i e s  to describe t h e  canbust ion behavior of toluene i n  an actual 
combustion device,  a comparison was made between experimental ly  measured n i t r i c  
ox ide  l e v e l s  and l e v e l s  p red ic t ed  by a m o d e l  canposed of t h e  to luene  oxida t ion  
mechanism reported here coupled with a r e a c t i o n  mechanism f o r  n i t r i c  oxide 
formation. The rate of n i t r i c  ox ide  production during canbustion is c o n t r o l l e d  
n o t  on ly  by t h e  flame temperature,  but also by t h e  oxygen atom concentrat ion.  
The oxygen atom concentrat ion,  however, is c o n t r o l l e d  by t h e  k i n e t i c s  of t h e  
combustion process. Therefore,  t h e  a b i l i t y  of a model to reasonably reproduce 
the  measured n i t r i c  oxide l e v e l s  would be an i n d i c a t o r  t h a t  t he  canbustion 
mechanism provides a reasonable  desc r ip t ion  of t h e  combustion process. 

The n i t r i c  oxide data t h a t  were used i n  the  c a p a r i s o n  were obtained 
from experiments with var ious toluene-air  mixtures i n  t h e  j e t - s t i r r e d  combustor 
described i n  re ference  25. B r i e f l y ,  t he  experimental  system cons is ted  of a 
cas t - z i r con ia  combustor having a s p h e r i c a l  e x t e r n a l  geometry 1.905 c m  i n  
diameter and a hemispherical  canbust ion c a v i t y  with a volume of 12.7 an3. 
toluene was heated,  atomized, and thoroughly mixed with heated a i r  before being 
introduced i n t o  the  canbustor.  Fuel  and a i r  flows were adjusted to achieve 
selected equivalence r a t i o s  wi th in  t h e  range of 0.7 to 1 . O  while  maintaining 
a mass loading of 0.0727 g/s-cm3. 
bustor  were preheated to a temperature of 455 K. The r e a c t i o n  p res su re  was 
1 a t m .  N i t r i c  oxide measurements were made with a chemiluminescent analyzer  
on a sample ex t r ac t ed  from wi th in  t h e  combustion c a v i t y  through a water-cooled 
gas-sampling probe. G a s  temperatures within t h e  c a b u s t i o n  c a v i t y  were 
measured with an iridium--iridium+ 40-percent-rhodium thermocouple. Other 
details  of t h e  experimental  system are given i n  re ference  26. The experi-  
mental r e s u l t s  a r e  shown i n  f i g u r e s  9 and 10  i n  which temperature and NO con- 
c e n t r a t i o n  are plotted versus t h e  f u e l - a i r  equivalence ratio. 

The 

The f u e l - a i r  mixtures flowing i n t o  the  com- 

The r eac t ions  and rate c o e f f i c i e n t s  t h a t  were combined wi th  the  toluene 
oxida t ion  mechanism are l i s ted  i n  table V. React ions (1 I )  through ( 3 ' )  
descr ibe  t h e  formation of n i t r i c  oxide. The ra te  c o e f f i c i e n t s  are from re fe r -  
ences 26 to  28, respec t ive ly .  The recombination r eac t ions  (4') through (6 ' )  
were p r e s e n t  i n  t h e  to luene  mechanism; however, t h e  rate c o e f f i c i e n t s  l i s ted  
i n  table V r e f l e c t  t h e  presence of d i f f e r e n t  major t h i r d  bodies M i n  t h e  
jet-stirred combustor experiments. The ra te  c o e f f i c i e n t s  selected f o r  t hese  
r eac t ions  were based on t h e  rate c o e f f i c i e n t s  reported by Jenkins  e t  a l .  
( r e f .  29) ,  who s tud ied  t h e  combustion of H2-02 mixtures  d i l u t e d  with water 
vapor. Jenkins  performed h i s  experiments over t he  temperature range 1330 to 
1550 K. Since water vapor w a s  t h e  predominant t h i r d  body, t h e  reported r a t e  
c o e f f i c i e n t s  a r e  e s s e n t i a l l y  those  for  
t h a t  would be app l i cab le  to  t h e  toluene-air  combustor experiments, t h e  follow- 
ing procedure w a s  used. 

M = H20.  To  g e t  r a t e  c o e f f i c i e n t s  

The expressions reported by Jenkins  e t  a l .  were used to c a l c u l a t e  a rate 
c o e f f i c i e n t  fo r  each r eac t ion  a t  the  temperature 1445 K. This  temperature was 
the average temperature i n  t h e  Jenkins  experiments. The temperature dependence 
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recomended by Jensen and Jones (ref. 30) was then used to d e r i v e  c o e f f i c i e n t  
express ions  from these  rate c o e f f i c i e n t s .  The r e s u l t i n g  r a t e -coe f f i c i en t  
express ions  are l i s t e d  i n  table V for The r a t e - c o e f f i c i e n t  expres- 
s i o n s  f o r  t h e  o t h e r  t h i r d  bodies  were assumed to be those  f o r  N2, t h e  pre- 
dominant t h i r d  body. 
reported by Gay and Pra t t  (ref. 31 ) were used to o b t a i n  t h e  M = N2 rate coef- 
f i c i e n t s  for r e a c t i o n s  ( 4 ' )  and (5'). The r e l a t i v e  ra te  c o e f f i c i e n t  f o r  reac- 
t i o n  ( 6 ' )  w a s  calculated by u s e  of t h e  rate c o e f f i c i e n t  a t  1445 K repor ted  by 
Jenkins  e t  a l .  for 
Jensen and Jones  f o r  M = N2. 

M = H2O. 

The r e l a t i v e  r eac t ion  e f f i c i e n c i e s  f o r  N2 and H20 

M = H20 and t h e  rate c o e f f i c i e n t  a t  1445 K reported by 

To determine t h e  a b i l i t y  of t h e  proposed to luene  combustion mechanism to 
predict t h e  exper imenta l ly  measured n i t r i c  oxide l e v e l s ,  computer s imula t ions  
of t h e  jet-stirred combustor experiments were performed with t h e  computer pro- 
gram descr ibed  i n  re ference  26. These s imula t ions  were made f o r  fue l - a i r  
equivalence ra t ios  of 0.70, 0.85, and 1.0. The method described i n  r e fe r -  
ence 25 was used to match t h e  c a l c u l a t e d  and measured temperatures.  The 
r e s u l t s  of t h e s e  s imula t ions  are plotted i n  f i g u r e  10. The agreement between 
t h e  measured and c a l c u l a t e d  n i t r i c  ox ide  l e v e l s  is very  good: t hus  the  shock- 
tube-derived to luene  mechanism provides  a reasonably good d e s c r i p t i o n  of t h e  
canbust ion process.  

CONCLUDING REMARKS 

The s to i ch iomet r i c  canbust ion of both benzene and to luene  behind i n c i d e n t  
shock waves w a s  s tud ied  over  a temperature range from 1700 to 2800 K and a 
p res su re  range f rm 1.1 to 1.7 a t m .  Measurements of t h e  concent ra t ions  of CO 
and C02 and t h e  concen t r a t ion  product  101 [a)] were made a f t e r  t h e  passage of 
the  i n c i d e n t  shock wave. A r eac t ion  mechanism of rate c o e f f i c i e n t s ,  taken from 
re fe rences  when possible and calculated when no s u i t a b l e  ra te  c o e f f i c i e n t  
e x i s t e d ,  w a s  used to effect  a canparison between t h e  measured experimental  
r e s u l t s  and r e s u l t s  from a computer model for f i n i t e - r a t e  chemical r e a c t i o n s  
behind i n c i d e n t  shock waves with boundary-layer growth included. Comparison 
w a s  a l so  e f f e c t e d  between computed r e s u l t s  and igni t ion-t ime data a v a i l a b l e  i n  
t h e  l i t e r a t u r e .  The ign i t ion- t ime comparisons and t h e  concent ra t ion  product  
[O] [COl comparisons were very  good. For both benzene and toluene,  t h e  computed 
[all and [C021 were o f f  by approximately the  same percentages,  with cmpu ted  
rCO21 lower by a factor of 2 than  measured r e s u l t s  and computed [COl higher  
than measured va lues  by about 20 percent .  

The d i f f e rences  i n  t h e  s e l e c t i o n  of ra te  c o e f f i c i e n t s  from t h e  l i t e r a t u r e  
were based on t h e  fact t h a t  t h e  p re sen t  tests were conducted i n  a d i f f e r e n t  
temperature and p res su re  regime and were altered by u s e  of t h e  Rice-Ramsperger- 
Kassel (RRK) theory.  S e l e c t i o n  of necessary rate c o e f f i c i e n t s ,  e s p e c i a l l y  f o r  
t h e  to luene  system, was based on analogous r a t e - c o e f f i c i e n t  s t e p s  according to 
t h e  benzene system suggested i n  t h e  open l i t e r a t u r e .  

Severa l  tests were run with toluene i n  a jet-stirred combustor and mea- 
surements of  n i t r i c  ox ide  and temperature were made. The rate mechanism 
developed from t h e  shock-tube s tudy,  with a d d i t i o n a l  r e a c t i o n s  included to 
describe t h e  n i t rogen  chemistry,  was used i n  a computer program which s imula t e s  
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the jet-stirred combustor to calculate NO concentration and temperature. The 
results of t h e  canparative tes t  cases were very good over an equivalence-ratio 
range from 0.7 to 1 .0  a t  atmospheric pressure. This demonstrates the capa- 
b i l i t y  of a rate mechanism developed frcnn shock-tube results to describe the 
chemistry i n  an actual flame device - a jet-stirred combustor. 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, VA 23665 
June 1 2 ,  1979 
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T, 
K 

24 25 
2452 
2453 
2345 
21 75 
21 54 
21 54 
201 9 
2050 
1936 
1980 
1780 
20 35 
20 20 
2020 

TABLE I .- EXPERIMENTAL RESULTS OF BENZENE CCBiBUSTION 

PI 
atm 

1.57 
1.59 
1.60 
9.52 
1.39 
1.37 
1.37 
1.27 
1.28 
1.25 
1.24 
T .09 
1.28 
1.27 
1.27 

3.830 x 
3.820 
3.905 
2.550 
2.696 
2.705 
2.885 
2.21 0 

2.589 
2.596 
1.750 
2.075 
2.394 
2.21 0 

----- 

------------ 
2.608 x loS8 
2.226 
1.975 
2.337 
2.325 
2.093 
2.300 
2.283 
2.442 
2.061 
1.866 
1 .854 
1.839 
2.530 

5.130 x 
5.130 
5.644 
6.320 
6.231 
6.821 
6.821 
5.749 
6.087 
5.342 
7.327 
5.373 
6.798 
6.740 
6.1 30 

TABLE 11. - EXPERIMENTAL RESULTS OF TOLUENE CCMBUSTION 

atm 

5.190 x 
4.880 
4.500 
3.750 
3.580 
3.600 
2.800 
3.100 

8.276 x 
8.292 
8.426 
7.055 
7.729 
6.867 ------------ I _----------- 

Tm 
K 

2470 
250 5 
2508 
2406 
2250 
2229 
2229 
21 05 
21 33 
2086 
2073 
1900 
2098 
21 10 
21 10  

Tm r 
K 

2794 
2820 
2499 
2400 
21 35 
2231 
---e 

---- 
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TABLE 111.- REACTION MECHANISM FOR BENZENE OXIDATION 

Reaction Rate coefficient, k 
(a) 

6 . 3  x 1013 exp(-30 196/T) 
3.2 x 1015 exp(-53 347/T) 
1.6 x 1014 exp(-4026/T) 
3.2 x 1014 exp(-3019/T) 
1 .O x exp(-3019/T) 
3.2 x 1014 exp(-43 280/T) 
7.5 x 1013 exp(-7550/T) 
1 .O x 1014 exp(-29 700/T) 
1 .O x 1014 exp(-29 700/T) 

1.0 x 1014 exp(-29 190/T) 
1.0 1013 

Reference 

6 
5, 6 

Present study 
6 
6 
6 

Present study 
Estimated 
Estimated 
Estimated 
Estimated 

aThe units for k are s-’ for unimolecular reactions, cm3/m01-s for 
bimolecular reactions, and cm6/mo12-s for termolecular reactions. 

TABLE 1V.- REACTION MECHANISM FOR TOLUENE OXIDATION 

Reaction 

(1) c7H8 + 02 -+ C7H7 + H02 
(2) C7H8 -+ C7H7 + H 
(3) C7H8 -+ C6H5 + a 3  
(4) H + C7H8 -+ C7H7 i- H2 
(5) 0 i- C7H8 -+ OH + C7H7 
( 6 )  OH + C7H8 -+ H20 + C7H7 
(7) 0 + C7H7 -+ a 2 0  + CgH5 
(8) 02 + C7H7 -+ 2 CO + C3H5 + C2H2 
(9) C7H7 -+ C4H3 + C3H4 
(10) C3H5 -+ CH3 + C2H2 
(1 1 ) C3H5 -+ C3H4 + H 
(12) C3H4 -+ CH3 + C2H 
( 7  3) C3H4 -+ C2H2 + CH2 
(14) 0 + C3H4 -+ C2H3 + HCO 

Rate coefficient, k 

(a) 
1 .O x 1014 exp(-20 130/T) 
3.2 x 10;; exp(-44 440/T) 
1 .O x lol4 exp(-52 550/T) 
1 .o x 10 exp(-3420/T) 
1 .O x lo1 exp(-3625/T) 
1 .O x 1 013 exp(-l51O/T) 

5.0 x 1OI2 exp(-7550/T) 
1 .O x lo1 exp(-51 330/T) 
1 .O x 1014 exp(-27 180/T) 
1.3 x 1013 exp(-30 ’790/T) 
1 .O x lo1 exp(-51 330/T) 
1.0 x 1015 exp(-51 330/T) 

1.0 x 1013 

1.0 x 1013 

Ref e r enc e 

Estimated 
23 
24 

Estimated 
Estimated 
Estimated 
Estimated 

Present study 
Estimated 
Estimated 

24 
Estimated 
Estimated 
Estimated 

aThe units for k are s-l for unimolecular reactions, cm3/mol-s for 
bimolecular reactions, and cm6/mo12-s for termolecular reactions. 
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TABLE V.- ADDITIONAL REACTIONS NEEDED IN THE 

STIRRED-COMBUSTOR CALCULATIONS 

React ion 

(1') 0 + N2 + NO + N 
(2') N + 02 + NO + 0 
(3') N + OH+ NO + H 
( 4 ' )  M + 2H -+ H2 + M: 

M = H20 
M = N2, all other 

( 5 ' )  M + H + OH -+ H20 + M: 
M = H20 
M = N2, all other 

(6') M + H + 0 -t OH + M: 
M = N2, all other 
M = H20 

- ~ 

Rate coefficient, k 

( p  1 
7.5 x 1013 exp(-38 250/T) 
6.4 x lo9 T1 exp(-3145/T) 
4.0 1013 

1.6 x 10l8 T-l 
2.7 x 10l7 T'I 

5.9 x 1023 ~ - 2  
1.2 x 1023 ~ - 2  

1.6 x 1020 T'l 
3.6 x 10l8 T'l 

Reference 

26 
27 
28 

Estimated 
Estimated 

Estimated 
Estimated 

Estimated 
Estimated 

aThe units for k are s-' for unimolecular reactions, cm3/m01-s for 
bimolecular reactions, and cm6/mo12-s for termolecular reactions. 
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