774 research outputs found
T.V. viewing guide: "The Adams Chronicles"
T.V. viewing guide: "The Adams Chronicles
Internationalism as A Current in The Peace Movement: A Symposium
Internationalism as A Current in The Peace Movement: A Symposiu
Solute Concentrations Influence Microbial Methanogenesis in Coal-bearing Strata of the Cherokee Basin, USA
Microorganisms have contributed significantly to subsurface energy resources by converting organic matter in hydrocarbon reservoirs into methane, the main component of natural gas. In this study, we consider environmental controls on microbial populations in coal-bearing strata of the Cherokee basin, an unconventional natural gas resource in southeast Kansas, USA. Pennsylvanian-age strata in the basin contain numerous thin (0.4-1.1 m) coalbeds with marginal thermal maturities (0.5-0.7% Ro) that are interbedded with shale and sandstone. We collected gas, water, and microbe samples from 16 commercial coalbed methane wells for geochemical and microbiological analysis. The water samples were Na-Cl type with total dissolved solids (TDS) content ranging from 34.9 to 91.3 g L?1. Gas dryness values [C1/(C2 + C3)] averaged 2640 and carbon and hydrogen isotope ratios of methane differed from those of carbon dioxide and water, respectively, by an average of 65 and 183%. These values are thought to be consistent with gas that formed primarily by hydrogenotrophic methanogenesis. Results from cultivation assays and taxonomic analysis of 16S rRNA genes agree with the geochemical results. Cultivable methanogens were present in every sample tested, methanogen sequences dominate the archaeal community in each sample (avg 91%), and few archaeal sequences (avg 4.2%) were classified within Methanosarcinales, an order of methanogens known to contain methylotrophic methanogens. Although hydrogenotrophs appear dominant, geochemical and microbial analyses both indicate that the proportion of methane generated by acetoclastic methanogens increases with the solute content of formation water, a trend that is contrary to existing conceptual models. Consistent with this trend, beta diversity analyses show that archaeal diversity significantly correlates with formation water solute content. In contrast, bacterial diversity more strongly correlates with location than solute content, possibly as a result of spatial variation in the thermal maturity of the coalbeds.Citation: Kirk MF, Wilson BH, Marquart KA, Zeglin LH, Vinson DS and Flynn TM (2015) Solute Concentrations Influence Microbial Methanogenesis in Coal-bearing Strata of the Cherokee Basin, USA. Front. Microbiol. 6:1287. doi: 10.3389/fmicb.2015.0128
Extraction of Modal Parameters from Spacecraft Flight Data
The modeled response of spacecraft systems must be validated using flight data as ground tests cannot adequately represent the flight. Tools from the field of operational modal analysis would typically be brought to bear on such structures. However, spacecraft systems have several complicated issues: 1. High amplitudes of loads; 2. Compressive loads on the vehicle in flight; 3. Lack of generous time-synchronized flight data; 4. Changing properties during the flight; and 5. Major vehicle changes due to staging. A particularly vexing parameter to extract is modal damping. Damping estimation has become a more critical issue as new mass-driven vehicle designs seek to use the highest damping value possible. The paper will focus on recent efforts to utilize spacecraft flight data to extract system parameters, with a special interest on modal damping. This work utilizes the analysis of correlation functions derived from a sliding window technique applied to the time record. Four different case studies are reported in the sequence that drove the authors understanding. The insights derived from these four exercises are preliminary conclusions for the general state-of-the-art, but may be of specific utility to similar problems approached with similar tools
Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A
Immunoglobulin A (IgA) is prominently secreted at mucosal surfaces and coats a fraction of the intestinal microbiota. However, the commensal bacteria bound by IgA are poorly characterized and the type of humoral immunity they elicit remains elusive. We used bacterial flow cytometry coupled with 16S rRNA gene sequencing (IgA-Seq) in murine models of immunodeficiency to identify IgA-bound bacteria and elucidate mechanisms of commensal IgA targeting. We found that residence in the small intestine, rather than bacterial identity, dictated induction of specific IgA. Most commensals elicited strong T-independent (TI) responses that originated from the orphan B1b lineage and from B2 cells, but excluded natural antibacterial B1a specificities. Atypical commensals including segmented filamentous bacteria and Mucispirillum evaded TI responses but elicited T-dependent IgA. These data demonstrate exquisite targeting of distinct commensal bacteria by multiple layers of humoral immunity and reveal a specialized function of the B1b lineage in TI mucosal IgA responses
Loss of Biological Diversity: A Global Crisis Requiring International Solutions: A Report to the National Science Board
Executive Summary
Biological diversity refers to the variety and variability among living organisms and the ecological complexes in which they occur. Diversity can be defined as the number of different items and their relative frequency. For biological diversity, these items are organized at many levels, ranging from complete ecosystems to the chemical structures that are the molecular basis of heredity. Thus, the term encompasses different ecosystems, species, genes, and their relative abundance (OTA, 1987).
There is an ongoing, unprecedented loss of the variety as well as absolute numbers of organisms-from the smallest microorganism to the largest and most spectacular of mammals. Loss of tropical moist forests, which contain over half the total species of organisms, has been well documented by scientists and is now widely reported in the media. Many other ecosystems are also threatened; as human populations and their support systems expand, natural ecosystems at all latitudes are altered or converted.
At its meeting on October 15, 1987, the National Science Board concluded that the world\u27s decreasing biological diversity is a critical scientific issue requiring immediate attention. The National Science Board\u27s Committee on International Science was asked to study the scientific and international aspects of the decline of biological diversity and to recommend a course of action. This report describes what the National Science Foundation (NSF) can do to influence the U.S. science and education base, articulates where international scientific cooperation is needed, and suggests roles for other agencies and organizations (both national and international) which have scientific, educational, and management responsibilities.
The current disappearance of biota has several causes: the destruction or degradation of entire ecosystems; the accelerating loss of individual species from communities or ecosystems as a result of human disturb;mce; and the loss of genetically distinct parts of populations due to human-induced selective pressures. Although not all parts of the planet are equally affected, the problem is global, and human activities are the primary cause.
The loss of biological diversity is important because human existence depends on the biological resources of 1 the earth. Human prosperity is based very largely on the ability to utilize biological diversity: to take advantage of the properties of plants, animals, fungi, and microorganisms for food, clothing, medicine, and shelter.
Scientific knowledge about the earth\u27s biological diversity has huge gaps. This lack of information hampers society\u27s ability either to estimate the magnitude of the problem or to prevent further losses. It is impossible to identify all the biological resources at risk, since there is no complete inventory of all the life forms on earth. Approximately 1.4 million species have been given scientific names, but estimates of actual numbers range from 5 million to 80 million species. Although knowledge of some taxa is extensive, the vast majority of groups are largely unknown. The current wave of extinction is destroying both known biotic resources and those still undiscovered.
As is proving to be the case with most environmental problems, neither the loss of biological diversity nor its solution is the exclusive province of any one nation. International cooperation is necessary to develop both scientific knowledge and successful mitigation and management strategies. The root causes of the problem include sociological and economic processes which operate on an global scale; a thorough understanding will require investigation and elucidation of both biological and non-biological components.
There are several reasons for increasing National Science Foundation (NSF) involvement in biodiversity studies: the economic and social importance of biodiversity (and the risk of opportunity lost due to accelerating extinction); the contributions such leadership can make toward to conservation of biological diversity; the important role of such studies in the international growth of science, especially in tropical countries; the potential impact of such studies on the future course of biology as a whole; and enhancing public awareness of the issues.
NSF should assume a scientific leadership position with respect to agencies in the U.S. and throughout the world. By insisting on the central importance of biodiversity, the NSF could encourage collaborative support for the actions recommended below.
1. The Committee believes that the role of the NSF is clear-NSF should, as a matter of National Science Board Policy, provide leadership to undertake the inventory of the world\u27s biodiversity.
2. The scientific basis for conservation biology, restoration ecology, and environmental management must be strengthened.
3. Educational and public awareness programs related to biodiversity need increased support.
4. The economic and social aspects of the biodiversity crisis need additional study.
5. Enhance support for developing country scientists and institutions for biodiversity research and conservation
Sulfide Generation by Dominant Halanaerobium Microorganisms in Hydraulically Fractured Shales
Hydraulic fracturing of black shale formations has greatly increased United States oil and natural gas recovery. However, the accumulation of biomass in subsurface reservoirs and pipelines is detrimental because of possible well souring, microbially induced corrosion, and pore clogging. Temporal sampling of produced fluids from a well in the Utica Shale revealed the dominance of Halanaerobium strains within the in situ microbial community and the potential for these microorganisms to catalyze thiosulfate-dependent sulfidogenesis. From these field data, we investigated biogenic sulfide production catalyzed by a Halanaerobium strain isolated from the produced fluids using proteogenomics and laboratory growth experiments. Analysis of Halanaerobium isolate genomes and reconstructed genomes from metagenomic data sets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes capable of converting thiosulfate to sulfide. Shotgun proteomics measurements using a Halanaerobium isolate verified that these proteins were more abundant when thiosulfate was present in the growth medium, and culture-based assays identified thiosulfate-dependent sulfide production by the same isolate. Increased production of sulfide and organic acids during the stationary growth phase suggests that fermentative Halanaerobium uses thiosulfate to remove excess reductant. These findings emphasize the potential detrimental effects that could arise from thiosulfate-reducing microorganisms in hydraulically fractured shales, which are undetected by current industry-wide corrosion diagnostics. IMPORTANCE Although thousands of wells in deep shale formations across the United States have been hydraulically fractured for oil and gas recovery, the impact of microbial metabolism within these environments is poorly understood. Our research demonstrates that dominant microbial populations in these subsurface ecosystems contain the conserved capacity for the reduction of thiosulfate to sulfide and that this process is likely occurring in the environment. Sulfide generation (also known as “souring”) is considered deleterious in the oil and gas industry because of both toxicity issues and impacts on corrosion of the subsurface infrastructure. Critically, the capacity for sulfide generation via reduction of sulfate was not detected in our data sets. Given that current industry wellhead tests for sulfidogenesis target canonical sulfate-reducing microorganisms, these data suggest that new approaches to the detection of sulfide-producing microorganisms may be necessary
Financing Direct Democracy: Revisiting the Research on Campaign Spending and Citizen Initiatives
The conventional view in the direct democracy literature is that spending against a measure is more effective than spending in favor of a measure, but the empirical results underlying this conclusion have been questioned by recent research. We argue that the conventional finding is driven by the endogenous nature of campaign spending: initiative proponents spend more when their ballot measure is likely to fail. We address this endogeneity by using an instrumental variables approach to analyze a comprehensive dataset of ballot propositions in California from 1976 to 2004. We find that both support and opposition spending on citizen initiatives have strong, statistically significant, and countervailing effects. We confirm this finding by looking at time series data from early polling on a subset of these measures. Both analyses show that spending in favor of citizen initiatives substantially increases their chances of passage, just as opposition spending decreases this likelihood
25th Annual Midwest/Midsouth Estate Planning Institute
Materials from UK/CLE\u27s 25th Annual Midwest/Midsouth Estate Planning Institute held in July 1998
- …