869 research outputs found

    Does the worsening galactic cosmic radiation environment observed by CRaTER preclude future manned deep space exploration?

    Get PDF
    Abstract The Sun and its solar wind are currently exhibiting extremely low densities and magnetic field strengths, representing states that have never been observed during the space age. The highly abnormal solar activity between cycles 23 and 24 has caused the longest solar minimum in over 80 years and continues into the unusually small solar maximum of cycle 24. As a result of the remarkably weak solar activity, we have also observed the highest fluxes of galactic cosmic rays in the space age and relatively small solar energetic particle events. We use observations from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter to examine the implications of these highly unusual solar conditions for human space exploration. We show that while these conditions are not a show stopper for long-duration missions (e.g., to the Moon, an asteroid, or Mars), galactic cosmic ray radiation remains a significant and worsening factor that limits mission durations. While solar energetic particle events in cycle 24 present some hazard, the accumulated doses for astronauts behind 10 g/cm2 shielding are well below current dose limits. Galactic cosmic radiation presents a more significant challenge: the time to 3% risk of exposure-induced death (REID) in interplanetary space was less than 400 days for a 30 year old male and less than 300 days for a 30 year old female in the last cycle 23–24 minimum. The time to 3% REID is estimated to be ∼20% lower in the coming cycle 24–25 minimum. If the heliospheric magnetic field continues to weaken over time, as is likely, then allowable mission durations will decrease correspondingly. Thus, we estimate exposures in extreme solar minimum conditions and the corresponding effects on allowable durations

    The Huckleberry Ridge Tuff, Yellowstone: evacuation of multiple magmatic systems in a complex episodic eruption

    Get PDF
    The 2.08 Ma, ∼2,500 km3 Huckleberry Ridge Tuff (HRT) eruption, Yellowstone, generated two fall deposits and three ignimbrite members (A, B, C), accompanying a ∼95 x 65 km caldera collapse. Field data imply that the pre-A fall deposits took weeks to be erupted, then breaks of weeks to months occurred between members A and B, and years to decades between B and C. We present compositional and isotopic data from single silicic clasts (pumice or fiamme) in the three ignimbrite members, plus new data from co-eruptive mafic components to reconstruct the nature and evacuation history of the HRT crustal magmatic complex. Geochemical data, building on field characteristics, are used to group nine silicic clast types into seven compositional suites (A1-A3; B1; C1-C3) within their respective members A, B and C. Isotopic data are then added to define four magmatic systems that were tapped simultaneously and/or sequentially during the eruption. Systems 1 and 2 fed the initial fall deposits and then vented throughout member A, accompanied by trace amounts of mafic magma. In member A, volumetrically dominant system 1 is represented by a rhyolite suite (A1: 73.0-77.7 wt % SiO2, 450-1680 ppm Ba) plus a distinct low-silica rhyolite suite (A2: 69.2-71.6 wt % SiO2, >2,500 ppm Ba). System 2 yielded only a low-Ba, high-silica rhyolite suite (A3: 76.7-77.4 wt % SiO2, ≤250 ppm Ba). Glass compositions in pumices from systems 1 and 2 show clustering, indicative of the same multiple melt-dominant bodies identified in the initial fall deposits and earliest ignimbrite. Member B samples define suite B1 (70.7-77.4 wt % SiO2, 540-3040 ppm Ba) derived from magmatic system 1 (but not 2) that had undergone mixing and reorganisation during the A:B time break, accompanying mafic magma inputs. Mafic scoria erupted in upper member B cover similar compositions to the member A clasts, but extend over a much broader compositional range. Member C clast compositions reflect major changes during the B:C time break, including rejuvenation of magmatic system 2 (last seen in member A) as suite C3 (75.3-77.2 wt % SiO2, 100-410 ppm Ba), plus the appearance of two new suites with strong crustal signatures. Suite C2 is another rhyolite (74.7-77.6 wt % SiO2, with Ba decreasing with silica from 2840 to 470 ppm) that defines magmatic system 3. Suite C2 also shows clustered glass compositions, suggesting that multiple melt-dominant bodies were a repetitive feature of the HRT magmatic complex. Suite C1, in contrast, is dacite to rhyolite (65.6-75.0 wt % SiO2, with Ba increasing with silica from 750 to 1710 ppm) that defines magmatic system 4. Compositions from magmatic systems 1 and 2 dominantly reflect fractional crystallisation, but include partial melting of cumulates related to earlier intrusions of the same mafic magmas as those syn-eruptively vented. Country rock assimilation was limited to minor amounts of a more radiogenic (with respect to Sr) evolved contaminant. In contrast, systems 3 and 4 show similar strongly crustal isotopic compositions (despite their differences in elemental composition) consistent with assimilation of Archean rocks via partial melts derived from cumulates associated with contrasting mafic lineages. System 3 links to the same HRT mafic compositions co-erupted in members A and B. In contrast, system 4 links to olivine tholeiite compositions erupted in the Yellowstone area before, sparsely during, and following the HRT itself. All four magmatic systems were housed beneath the HRT caldera area. Systems 1 and 2 were hosted in Archean crust that had been modified by Cretaceous/Eocene magmatism, whereas systems 3 and 4 were hosted within crust that retained Archean isotopic characteristics. The extreme compositional diversity in the HRT highlights the spatial and temporal complexities that can be associated with large-volume silicic magmatism

    CORE Technology and Exact Hamiltonian Real-Space Renormalization Group Transformations

    Full text link
    The COntractor REnormalization group (CORE) method, a new approach to solving Hamiltonian lattice systems, is presented. The method defines a systematic and nonperturbative means of implementing Kadanoff-Wilson real-space renormalization group transformations using cluster expansion and contraction techniques. We illustrate the approach and demonstrate its effectiveness using scalar field theory, the Heisenberg antiferromagnetic chain, and the anisotropic Ising chain. Future applications to the Hubbard and t-J models and lattice gauge theory are discussed.Comment: 65 pages, 9 Postscript figures, uses epsf.st

    Tailored second line therapy in asthmatic children with the arginine-16 genotype

    Get PDF
    The arginine-16 beta-2 receptor genotype confers increased susceptibility to exacerbations in asthmatic children taking regular long acting beta-2 agonists. We therefore evaluated using montelukast as an alternative to salmeterol as tailored second line asthma controller therapy in children expressing this susceptible genotype. 62 persistent asthmatic children with the homozygous arginine-16 genotype were randomized to receive salmeterol 50ug bid or montelukast 5/10mg od as add on to inhaled fluticasone for 1 year. School absences (the primary outcome) were reduced with montelukast arm compared to salmeterol: difference in score = 0.40 (95%CI 0.07-0.87) p=0.005. Albuterol use was also reduced with montelukast compared with salmeterol: difference in score = 0.47 (95%CI 0.16-0.79) p<0.0001. Greater improvements occurred in both symptom and quality of life scores with montelukast vs salmeterol, while there was no difference in FEV1. Montelukast may be suitable as tailored second line controller therapy instead of salmeterol in asthmatic children expressing the susceptible arginine-16 genotype - moving towards a personalised medicine approach to management

    International Society of Sports Nutrition Position Stand: beta-hydroxy-beta-methylbutyrate (HMB)

    Get PDF
    Abstract Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature on the use of beta-hydroxy-beta-methylbutyrate (HMB) as a nutritional supplement. The ISSN has concluded the following. 1. HMB can be used to enhance recovery by attenuating exercise induced skeletal muscle damage in trained and untrained populations. 2. If consuming HMB, an athlete will benefit from consuming the supplement in close proximity to their workout. 3. HMB appears to be most effective when consumed for 2 weeks prior to an exercise bout. 4. Thirty-eight mg·kg·BM-1 daily of HMB has been demonstrated to enhance skeletal muscle hypertrophy, strength, and power in untrained and trained populations when the appropriate exercise prescription is utilized. 5. Currently, two forms of HMB have been used: Calcium HMB (HMB-Ca) and a free acid form of HMB (HMB-FA). HMB-FA may increase plasma absorption and retention of HMB to a greater extent than HMB-CA. However, research with HMB-FA is in its infancy, and there is not enough research to support whether one form is superior. 6. HMB has been demonstrated to increase LBM and functionality in elderly, sedentary populations. 7. HMB ingestion in conjunction with a structured exercise program may result in greater declines in fat mass (FM). 8. HMB’s mechanisms of action include an inhibition and increase of proteolysis and protein synthesis, respectively. 9. Chronic consumption of HMB is safe in both young and old populations

    Volcanic glass from the 1.8 ka Taupō eruption (New Zealand) detected in Antarctic ice at ~ 230 CE.

    Get PDF
    Chemical anomalies in polar ice core records are frequently linked to volcanism; however, without the presence of (crypto)tephra particles, links to specific eruptions remain speculative. Correlating tephras yields estimates of eruption timing and potential source volcano, offers refinement of ice core chronologies, and provides insights into volcanic impacts. Here, we report on sparse rhyolitic glass shards detected in the Roosevelt Island Climate Evolution (RICE) ice core (West Antarctica), attributed to the 1.8 ka Taupō eruption (New Zealand)-one of the largest and most energetic Holocene eruptions globally. Six shards of a distinctive geochemical composition, identical within analytical uncertainties to proximal Taupō glass, are accompanied by a single shard indistinguishable from glass of the ~25.5 ka Ōruanui supereruption, also from Taupō volcano. This double fingerprint uniquely identifies the source volcano and helps link the shards to the climactic phase of the Taupō eruption. The englacial Taupō-derived glass shards coincide with a particle spike and conductivity anomaly at 278.84 m core depth, along with trachytic glass from a local Antarctic eruption of Mt. Melbourne. The assessed age of the sampled ice is 230 ± 19 CE (95% confidence), confirming that the published radiocarbon wiggle-match date of 232 ± 10 CE (2 SD) for the Taupō eruption is robust

    New petrological, geochemical, and geochronological perspectives on andesite-dacite magma genesis at Ruapehu volcano, New Zealand

    Get PDF
    Time–composition relationships in eruptive sequences at composite volcanoes can show how the ongoing intrusion of magmas progressively affects the lithosphere at continental convergent margins. Here, new whole-rock and microanalytical major and trace element data from andesite-dacite lava flows are integrated with previous studies and existing isotopic data, and placed within the framework of a high-resolution chronostratigraphy for Ruapehu volcano (southern Taupo Volcanic Zone, New Zealand). The geochemical evolution of lavas erupted over the ∼200 kyr lifetime of the exposed edifice reflects variable degrees of fractionation and systematic changes in the type of crustal assimilation in the Ruapehu magma system. Lavas erupted from ∼200–150 ka have previously been distinguished from those erupted <150 ka based on Sr-Nd isotopic characteristics, which indicate that the oldest lavas were sourced from magmas that assimilated oceanic crust. Such source rocks underlie the regionally widespread Mesozoic meta-sedimentary greywacke-argillite basement, which was conversely assimilated by <150 ka magmas. New results from this work reveal that since 150 ka, an upper limit of magma differentiation occurred from ∼50–35 ka. High K2O (∼6 wt%) and Rb contents (∼270 ppm) in melt inclusions, interstitial glass, and glass from in situ quenched melts of partially fused crustal xenoliths are reported for andesite-dacite lavas erupted during this period. In addition to crystal fractionation, selective partial melting and assimilation of K- and Rb-rich mineral phases (e.g., biotite, K-feldspar) that are significant components of the meta-sedimentary basement rocks is inferred to explain these geochemical characteristics. These processes coincided also with the effusion of high-MgO andesitedacite lavas that display petrological evidence for mixing between andesite-dacite and more mafic magmas. An influx of hotter mafic magma into the system explains why the extent of crustal assimilation recorded by Ruapehu lavas peaked during the ∼50–35 ka eruptive period. From 26 ka to the present, andesite lavas have reverted to more mafic compositions with less potassic melt inclusion and whole-rock compositions when compared to the ∼50–35 ka lavas. We suggest that the younger lavas assimilated less-enriched melts because fertile phases had been preferentially extracted from the crustal column during earlier magmatism. This scenario of bottom-up heating of the lithosphere and exhaustion of fertile phases due to the progressive intrusion of magma explains the geochemical evolution of Ruapehu lavas. This model may be applicable to other long-lived composite volcanoes of the circum-Pacific continental arcs

    The Atacama Cosmology Telescope: A Measurement of the Thermal Sunyaev-Zel'dovich Effect Using the Skewness of the CMB Temperature Distribution

    Get PDF
    We present a detection of the unnormalized skewness induced by the thermal Sunyaev-Zel'dovich (tSZ) effect in filtered Atacama Cosmology Telescope (ACT) 148 GHz cosmic microwave background temperature maps. Contamination due to infrared and radio sources is minimized by template subtraction of resolved sources and by constructing a mask using outlying values in the 218 GHz (tSZ-null) ACT maps. We measure = -31 +- 6 \mu K^3 (measurement error only) or +- 14 \mu K^3 (including cosmic variance error) in the filtered ACT data, a 5-sigma detection. We show that the skewness is a sensitive probe of sigma_8, and use analytic calculations and tSZ simulations to obtain cosmological constraints from this measurement. From this signal alone we infer a value of sigma_8= 0.79 +0.03 -0.03 (68 % C.L.) +0.06 -0.06 (95 % C.L.). Our results demonstrate that measurements of non-Gaussianity can be a useful method for characterizing the tSZ effect and extracting the underlying cosmological information.Comment: 9 pages, 5 figures. Replaced with version accepted by Phys. Rev. D, with improvements to the likelihood function and the IR source treatment; only minor changes in the result

    Weapons Make the Man (Larger): Formidability Is Represented as Size and Strength in Humans

    Get PDF
    In order to determine how to act in situations of potential agonistic conflict, individuals must assess multiple features of a prospective foe that contribute to the foe's resource-holding potential, or formidability. Across diverse species, physical size and strength are key determinants of formidability, and the same is often true for humans. However, in many species, formidability is also influenced by other factors, such as sex, coalitional size, and, in humans, access to weaponry. Decision-making involving assessments of multiple features is enhanced by the use of a single summary variable that encapsulates the contributions of these features. Given both a) the phylogenetic antiquity of the importance of size and strength as determinants of formidability, and b) redundant experiences during development that underscore the contributions of size and strength to formidability, we hypothesize that size and strength constitute the conceptual dimensions of a representation used to summarize multiple diverse determinants of a prospective foe's formidability. Here, we test this hypothesis in humans by examining the effects of a potential foe's access to weaponry on estimations of that individual's size and strength. We demonstrate that knowing that an individual possesses a gun or a large kitchen knife leads observers to conceptualize him as taller, and generally larger and more muscular, than individuals who possess only tools or similarly mundane objects. We also document that such patterns are not explicable in terms of any actual correlation between gun ownership and physical size, nor can they be explained in terms of cultural schemas or other background knowledge linking particular objects to individuals of particular size and strength. These findings pave the way for a fuller understanding of the evolution of the cognitive systems whereby humans – and likely many other social vertebrates – navigate social hierarchies
    corecore