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Atacama Cosmology Telescope: A Measurement of the Thermal Sunyaev-
Zel’dovich Effect Using the Skewness of the CMB Temperature
Distribution

Abstract
We present a detection of the unnormalized skewness 3(n̂)> induced by the thermal Sunyaev-Zel’dovich
(tSZ) effect in filtered Atacama Cosmology Telescope (ACT) 148 GHz cosmic microwave background
temperature maps. Contamination due to infrared and radio sources is minimized by template subtraction of
resolved sources and by constructing a mask using outlying values in the 218 GHz (tSZ-null) ACT maps. We
measure 3(n̂)>=-31±6 μK3 (Gaussian statistics assumed) or ±14 μK3 (including non-Gaussian corrections) in
the filtered ACT data, a 5σ detection. We show that the skewness is a sensitive probe of σ8, and use analytic
calculations and tSZ simulations to obtain cosmological constraints from this measurement. From this signal
alone we infer a value of σ8=0.79-0.03+0.03 (68% C.L.) -0.06+0.06 (95% C.L.). Our results demonstrate that
measurements of non-Gaussianity can be a useful method for characterizing the tSZ effect and extracting the
underlying cosmological information.

Disciplines
Physical Sciences and Mathematics | Physics

Comments
Wilson, M. J., Sherwin, B. D., Hill, J. C., et al. (2012). Atacama Cosmology Telescope: A measurement of the
thermal Sunyaev-Zel'dovich effect using the skewness of the CMB temperature distribution. Physical Review
D, 86(12), 122005. doi: 10.1103/PhysRevD.86.122005

©2012 American Physical Society

Author(s)
Michael J. Wilson, Blake D. Sherwin, J. Colin Hill, Graeme Addison, Nick Battaglia, J. Richard Bond, Sudeep
Das, Mark J. Devlin, Erik D. Reese, and Daniel S. Swetz

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/physics_papers/275

http://dx.doi.org/10.1103/PhysRevD.86.122005
http://repository.upenn.edu/physics_papers/275?utm_source=repository.upenn.edu%2Fphysics_papers%2F275&utm_medium=PDF&utm_campaign=PDFCoverPages


Atacama Cosmology Telescope: A measurement of the thermal Sunyaev-Zel’dovich effect
using the skewness of the CMB temperature distribution

Michael J. Wilson,1,2 Blake D. Sherwin,3,* J. Colin Hill,2 Graeme Addison,1 Nick Battaglia,4 J. Richard Bond,5

Sudeep Das,6,3,2 Mark J. Devlin,7 Joanna Dunkley,1 Rolando Dünner,8 Joseph W. Fowler,9,3 Megan B. Gralla,10

Amir Hajian,5 Mark Halpern,11 Matt Hilton,12 Adam D. Hincks,5 Renée Hlozek,2 Kevin Huffenberger,13 John P. Hughes,14

Arthur Kosowsky,15 Thibaut Louis,1 Tobias A. Marriage,10,2 Danica Marsden,16 Felipe Menanteau,14 Kavilan Moodley,17

Michael D. Niemack,9,3 Michael R. Nolta,5 Lyman A. Page,3 Bruce Partridge,18 Erik D. Reese,7 Neelima Sehgal,2

Jon Sievers,5 David N. Spergel,2 Suzanne T. Staggs,3 Daniel S. Swetz,7,9 Eric R. Switzer,19,3 Hy Trac,4 and Ed Wollack20

1Department of Astrophysics, Oxford University, Oxford OX1 3RH, United Kingdom
2Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, New Jersey 08544, USA

3Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
4Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

5Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario, Canada M5S 3H8
6Berkeley Center for Cosmological Physics, Department of Physics, University of California, Berkeley, California 94720, USA

7Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
8Departamento de Astronomı́a y Astrofı́sica, Pontificı́a Univ. Católica, Casilla 306, Santiago 22, Chile
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We present a detection of the unnormalized skewness h ~T3ðn̂Þi induced by the thermal Sunyaev-

Zel’dovich (tSZ) effect in filtered Atacama Cosmology Telescope (ACT) 148 GHz cosmic microwave

background temperature maps. Contamination due to infrared and radio sources is minimized by template

subtraction of resolved sources and by constructing a mask using outlying values in the 218 GHz (tSZ-

null) ACT maps. We measure h ~T3ðn̂Þi ¼ �31� 6 �K3 (Gaussian statistics assumed) or �14 �K3

(including non-Gaussian corrections) in the filtered ACT data, a 5� detection. We show that the skewness

is a sensitive probe of �8, and use analytic calculations and tSZ simulations to obtain cosmological

constraints from this measurement. From this signal alone we infer a value of �8 ¼ 0:79þ0:03
�0:03 (68% C.L.)

þ0:06
�0:06 (95% C.L.). Our results demonstrate that measurements of non-Gaussianity can be a useful method

for characterizing the tSZ effect and extracting the underlying cosmological information.

DOI: 10.1103/PhysRevD.86.122005 PACS numbers: 98.70.Vc

I. INTRODUCTION

Current observations of the cosmic microwave back-
ground (CMB) anisotropies on arcminute scales using
experiments such as the Atacama Cosmology Telescope
(ACT; [1–3]) and the South Pole Telescope [4,5] probe not
only the primordial microwave background fluctuations
sourced 13.7 billion years ago, but also measure secondary
anisotropies caused by more recent and less distant physi-
cal processes. Such secondary anisotropies are induced by

IR dusty galaxies and radio sources, gravitational lensing,
and the Sunyaev-Zel’dovich (SZ) effect. The SZ effect
[6,7] arises due to the inverse Compton scattering of
CMB photons off high energy electrons located predomi-
nantly in hot gas in galaxy clusters (the intra-cluster
medium, or ICM). This scattering modifies the spectrum
of CMB photons in the direction of a cluster in a way that
depends on both the thermal energy contained in the ICM
(the thermal SZ effect) as well as the peculiar velocity of
the cluster with respect to the CMB rest frame (the kinetic
SZ effect). The kinetic SZ effect simply increases or
decreases the amplitude of the CMB spectrum in the
direction of a cluster, but the thermal SZ (tSZ) effect
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modifies the CMB spectrum in a frequency-dependent
manner. The tSZ effect is characterized by a decrease
(increase) in the observed CMB temperature at frequencies
below (above) 218 GHz in the direction of a galaxy cluster
due to inverse Compton scattering. The thermal effect is
generally at least an order of magnitude larger than the
kinetic effect for a typical massive cluster at 148 GHz.
Measurements of the tSZ signal, which is proportional to
the integrated ICM pressure along the line of sight, can
be used to observe the high redshift universe, constrain
cosmological parameters—in particular �8, the variance
of matter fluctuations on scales of 8 Mpc=h—and probe
baryonic physics in the ICM.

The tSZ signal has so far primarily been studied either
by directly resolving individual clusters in arcminute-scale
CMB maps [8–12] or by measuring it statistically through
its presence in the small-scale CMB power spectrum
[13,14]. However, it is by no means obvious that the power
spectrum is the best way to characterize the statistical
properties of the tSZ field. Indeed, measuring the tSZ
signal in the power spectrum is challenging because there
are many other sources of CMB power on arcminute
scales: primordial CMB fluctuations, CMB lensing, instru-
mental noise, dusty star-forming IR galaxies, and radio
sources. In order to disentangle these contributions to the
power spectrum and isolate the amplitude of the tSZ signal,
a sophisticated multifrequency analysis is required, which
involves modeling the power spectrum contribution of
each of these components in at least two frequency bands.

In this paper we instead measure the tSZ signal using the
unnormalized skewness of the filtered temperature fluctua-
tion h ~T3ðn̂Þi. This quantity has the significant advantage
that, unlike measurements of the tSZ effect through the
power spectrum, its measurement does not require the
subtraction of Gaussian contributions, because it is only
sensitive to non-Gaussian signals with nonzero skewness.
The primordial CMB (which is assumed to be Gaussian on
these scales) and instrumental noise (which is Gaussian)
hence do not contribute to it. In addition, CMB lensing and
the kinetic SZ effect do not induce skewness (as they are
equally likely to produce positive and negative fluctua-
tions), and so do not contribute either. The primary con-
tributions to this quantity are thus only the tSZ effect and
point sources. These signals have a different frequency
dependence. Furthermore, the tSZ signal contributes nega-
tive skewness, whereas radio and IR point sources contrib-
ute positive skewness. These characteristics allow the tSZ
signal to be effectively isolated and studied, as first pointed
out in Ref. [15].

Measurements of the skewness also possess significant
advantages from an astrophysical perspective. A consistent
problem plaguing studies of the tSZ power spectrum has
been theoretical uncertainty in the ICM electron pressure
profile [16–18], especially in the low-mass, high-redshift
groups and clusters that contribute much of the signal.

As discussed in the following section in detail, the tSZ
skewness signal is dominated by characteristically higher-
mass, lower-redshift clusters than those that source the
power spectrum signal. The ICM astrophysics for these
objects is better constrained by x-ray observations and they
are less sensitive to energy input from nongravitational
sources [18,19]. Thus, the theoretical systematic uncer-
tainty in modeling the tSZ skewness is correspondingly
lower as well. In addition, at 148 GHz, dusty star-forming
galaxies are less prevalent in massive, low-redshift clusters
(which contribute more to the skewness) than in high-
redshift groups and clusters (which contribute more to
the tSZ power spectrum) [20]. Thus, we expect the corre-
lation between tSZ signal and dusty galaxy emission,
which can complicate analyses of the tSZ effect, to be
smaller for a measurement of the skewness.
Moreover, the tSZ skewness scales with a higher power

of�8 than the tSZ power spectrum amplitude. This result is
precisely what one would expect if the signal were domi-
nated by higher-mass, rarer objects, as the high-mass tail of
the mass function is particularly sensitive to a change in�8.
This provides the prospect of tight constraints on cosmo-
logical parameters from the skewness that are competitive
with constraints from the power spectrum.
In this paper, we first explain the usefulness of the

skewness as a cosmological probe by theoretically deriving
its scaling with �8 as well as the characteristic masses of
the objects sourcing the signal. Subsequent sections of
the paper describe how we measured this skewness in the
ACT data. We describe how the ACT temperature maps are
processed in order to make a reliable measurement of the
unnormalized skewness due to the tSZ effect, and discuss
how contamination from IR dusty galaxies and radio point
sources is minimized. We report the measurement results
and discuss how the errors are calculated. Finally, we
discuss the cosmological constraints and associated uncer-
tainties derived from this measurement.
We assume a flat �CDM cosmology throughout, with

parameters set to their Wilkinson Microwave Anisotropy
Probe 5-year values [21] unless otherwise specified.
All masses are quoted in units of M�=h, where h �
H0=ð100 km s�1 Mpc�1Þ and H0 is the Hubble parameter
today.

II. SKEWNESS OF THE TSZ EFFECT

In this section, we investigate the Nth moments of the
pixel probability density function, hTNi � hTðn̂ÞNi, focus-
ing on the specific case of the unnormalized skewness hT3i.
We show that the unnormalized skewness hT3i has a
steeper scaling with �8 than the power spectrum amplitude
and is dominated by characteristically higher-mass, lower-
redshift clusters, for which the ICM astrophysics is better
constrained and modeled. As explained earlier, these
characteristics make tSZ skewness measurements a useful
cosmological probe.
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In order to calculate theNth moment of the tSZ field, we
assume the distribution of clusters on the sky can be
adequately described by a Poisson distribution (and that
contributions due to clustering and overlapping sources are
negligible [22]). The Nth moment is then given by

hTNi ¼
Z

dz
dV

dz

Z
dM

dnðM; zÞ
dM

Z
d2�Tð�;M; zÞN; (1)

where Tð�;M; zÞ is the tSZ temperature decrement at
position � on the sky with respect to the center of a cluster
of mass M at redshift z:

Tð�;M;zÞ¼gð�ÞTCMB

�T

mec
2

�
Z
Pe

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2þd2AðzÞj�j2

q
;M;z

�
dl; (2)

where gð�Þ is the spectral function of the tSZ effect, dAðzÞ
is the angular diameter distance to redshift z, and the
integral is taken over the electron pressure profile
Peðr;M; zÞ along the line of sight.

For a given cosmology, Eqs. (1) and (2) show that there
are two ingredients needed to calculate the Nth tSZ
moment (in addition to the comoving volume per steradian
dV=dz, which can be calculated easily): (1) the halo mass
function dnðM; zÞ=dM and (2) the electron pressure profile
Peðr;M; zÞ for halos of mass M at redshift z. We use the
halo mass function of Tinker et al. [23] with the redshift-
dependent parameters given in their Eqs. (5)–(8). While
uncertainties in tSZ calculations due to the mass function
are often neglected, they may be more important for the
skewness than the power spectrum, as the skewness is more
sensitive to the high-mass exponential tail of the mass
function. We estimate the uncertainty arising from the
mass function by performing alternate calculations with
the mass function of Sheth and Tormen [24], which predicts
more massive clusters at low redshift than Ref. [23] for the
same cosmology. As an example, the predicted skewness
calculated using the pressure profile of Battaglia et al. [16]
with the mass function of Tinker et al. [23] is� 35% lower
than the equivalent result using the mass function of Sheth
and Tormen [24]. However, the derived scalings of the
variance and skewness with �8 computed using Ref. [24]
are identical to those found below using Ref. [23]. Thus,
the scalings calculated below are robust to uncertainties in
the mass function, and we use them later to interpret our
skewness measurement. However, we rely on cosmological
simulations to obtain predicted values of the tSZ skewness.
We do not consider alternate mass functions any further in
our analytic calculations.

We consider three different pressure profiles from
Refs. [16,17,25] in order to evaluate the theoretical uncer-
tainty in the scaling of the tSZ skewness with �8. These
profiles differ in how they are derived and in the ICM
physics they assume. They thus provide a measure of the

scatter in the scalings of the variance and skewness with�8

due to uncertainties in the gas physics.
Finally, in order to make a faithful comparison between

the theory and data, we convolve Eq. (2) with the Fourier-
space filter described in the subsequent data analysis
sections of this paper. In addition, we account for the
12� pixel fluctuation cutoff used in the data analysis (see
below) by placing each cluster of massM and redshift z in
the integrals of Eq. (1) in an idealized ACT pixel and
computing the observed temperature decrement, account-
ing carefully for geometric effects that can arise depending
on the alignment of the cluster and pixel centers. If the
calculated temperature decrement exceeds the 12� cutoff,
then we do not include this cluster in the integrals. These
steps cannot be neglected, as the filter and cutoff reduce the
predicted tSZ skewness amplitude by up to 95% compared
to the pure theoretical value [26]. Most of this reduction is
due to the filter, which modestly suppresses the tempera-
ture decrement profile of a typical cluster; this suppression
strongly affects the skewness because it is a cubic statistic.
The analytic theory described above determines the

scaling of the Nth tSZ moment with �8. In particular, we
compute Eq. (1) with N ¼ 2, N ¼ 3, and N ¼ 6 for each
of the chosen pressure profiles while varying �8. The
scalings of the variance (N ¼ 2), the skewness (N ¼ 3),
and the sixth moment (N ¼ 6, which we require for error
calculation) with �8 are well described by power laws
for each of these profiles: h ~T2;3;6i / �

�2;3;6

8 . For the profile

of Battaglia et al. [16], we find �2 ¼ 7:8, �3 ¼ 11:1, and
�6 ¼ 16:7; for the profile of Arnaud et al. [17], we find
�2 ¼ 8:0, �3 ¼ 11:2, and �6 ¼ 15:9; and for the profile of
Komatsu and Seljak [25], we find �2 ¼ 7:6, �3 ¼ 10:7,
and �6 ¼ 18:0. Note that the scaling of the variance
matches the scaling of the tSZ power spectrum amplitude
that has been found by a number of other studies, as
expected (e.g., Refs. [25,27]). The scaling of the unnor-
malized skewness is similar to that found by Holder et al.
[28], who obtained �3 ¼ 10:25. Also, note that the skew-
ness scaling is modified slightly from its pure theoretical
value [26] due to the Fourier-space filter and pixel fluctua-
tion cutoff mentioned above. The overall conclusion is that
the skewness scales with a higher power of �8 than the
variance (or power spectrum). We use this scaling to derive
a constraint on �8 from our measurement of the skewness
below.
In addition, we compare the characteristic mass scale

responsible for the tSZ skewness and tSZ variance (or
power spectrum) signals. Analytic calculations show that
the tSZ power spectrum amplitude typically receives
�50% of its value from halos with M<2–3�1014M�=h,
while the tSZ skewness receives only � 20% of its ampli-
tude from these less massive objects. This indicates that the
clusters responsible for the tSZ skewness signal are better
theoretically modeled than those responsible for much of
the tSZ power spectrum, both because massive clusters
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have been observed more thoroughly, and because more
massive clusters are dominated by gravitational heating
and are less sensitive to nonlinear energy input from
active galactic nuclei, turbulence, and other mechanisms
[18,19]. We verify this claim when interpreting the skew-
ness measurement below, finding that the systematic theo-
retical uncertainty (as derived from simulations) is slightly
smaller than the statistical error from the measurement,
though still non-negligible.

III. MAP PROCESSING

A. Filtering the maps

The Atacama Cosmology Telescope [1–3] is a 6 m
telescope in the Atacama Desert of Chile, which operated
at 148, 218, and 277 GHz using three 1024-element arrays
of superconducting bolometers. The maps used in this
analysis were made over three years of observation in the
equatorial region from 2008–2010 at 148 GHz, and consist
of six 3� � 18� patches of sky at a noise level of� 21 �K
arcmin. In our source mask construction we also use maps
of the same area made in 2008 at a frequency of 218 GHz.
The maps were calibrated as in Ref. [29]. We apodize the
maps by multiplying them with a mask that smoothly
increases from zero to unity over 0.1� from the edge of
the maps.

Although atmospheric noise is removed in the map-
making process, we implement an additional filter in
Fourier space to remove signal at multipoles below
‘ ¼ 500 (‘ is the magnitude of the Fourier variable con-
jugate to sky angle). In addition, we remove a stripe for
which �100< ‘dec < 100 along the Fourier axis corre-
sponding to declination to avoid contamination by scan
noise. Furthermore, to increase the tSZ signal-to-noise
ratio (S/N), we apply a Wiener filter which downweights
scales at which the tSZ signal is subdominant. This (non-
optimal) filter is constructed by dividing the best-fit tSZ
power spectrum from Ref. [13] by the total average power

spectrum measured in the data maps, i.e. CtSZ
‘ =Ctot

‘ . For

multipoles above ‘ ¼ 6� 103, the tSZ signal is com-
pletely dominated by detector noise and point sources,
and hence we remove all power above this multipole in
the temperature maps. The final Fourier-space filter, shown
in Fig. 1, is normalized such that its maximum value is
unity. As it is constructed using the binned power spectrum
of the data, it is not perfectly smooth; however, we apply
the same filter consistently to data, simulations, and ana-
lytic theory, and thus any details of the filter do not bias the
interpretation of our result. After filtering, the edges of
the maps are cut off to reduce any edge effects that might
occur upon Fourier transforming despite apodization.
Simulations verify that no additional skewness is intro-
duced by edge effects into a trimmed map.

B. Removing point sources

In order to obtain a skewness signal due only to the tSZ
effect, any contamination of the signal by point sources
must be minimized. These objects consist of IR dusty
galaxies and radio sources. We use two approaches to
eliminate the point source contribution: template subtrac-
tion and masking using the 218 GHz channel.
In the template subtraction method [30], which we use to

remove resolved point sources (mainly bright radio
sources), sources with a S/N greater than 5 are first iden-
tified in a match-filtered map. A template with the shape of
the ACT beam is then scaled to the appropriate peak
brightness of each source, and this profile is subtracted
from the raw data. The process is iterated following the
CLEAN algorithm [31] until no more sources can be iden-

tified. We verify that this procedure does not introduce
skewness into the maps (e.g., through oversubtraction) by
checking that similar results are obtained using a different
procedure for reducing source contamination, in which we
mask and in-paint pixels which contain bright sources with
S=N> 5 [32].
We take a second step to suppress the lower-flux, unre-

solved point sources (mainly dusty galaxies) that remain
undetected by the template subtraction algorithm. At
218 GHz, dusty galaxies are significantly brighter than at
148 GHz and the tSZ effect is negligible. We construct a
dusty galaxy mask by setting all pixels (which are approxi-
mately 0:25 arcmin2) to zero that have a temperature in the
218 GHz maps larger than a specified cutoff value. This
cutoff is chosen to be 3.2 times the standard deviation of
the pixel values in the filtered 148 GHz map (3:2�). This
procedure ensures regions with high flux from dusty
galaxies are masked. We also set to zero all pixels for
which the temperature is lower than the negative of this
cutoff so that the masking procedure does not introduce
spurious skewness into the lensed CMB distribution, which
is assumed to have zero intrinsic skewness. The mask is
then applied to the 148 GHz map to reduce the point
source contribution. Simulations (Ref. [33] for IR sources)

FIG. 1 (color online). The Wiener filter applied to the ACT
temperature maps before calculating the unnormalized skew-
ness. This filter upweights scales on which the tSZ signal is large
compared to other sources of anisotropy.
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verify that the masking procedure does not introduce
spurious skewness into the 148 GHz maps.

Finally, all pixels more than 12 standard deviations
(12�) from the mean are also removed from the
148 GHz maps. Due to the ringing around very positive
or negative pixels caused by the Wiener filter, the sur-
rounding eight arcminutes of these points are also masked.
This additional step slightly increases the S/N of the skew-
ness measurement by reducing the dependence on large
outliers, enhances the information content of low moments
by truncating the tail of the pixel probability density
function, and ensures that any anomalous outlying points
from possibly mis-subtracted bright radio sources do not
contribute to the skewness signal. Overall, 14.5% of the
148 GHz map is removed by the masking procedure,
though the removed points are random with respect to
the tSZ field and should not change the signal.

IV. RESULTS

A. Evaluating the skewness

We compute the unnormalized skewness of the filtered
and processed 148 GHz maps by simply cubing and
averaging the pixel values in real space. The result is
h ~T3i ¼ �31� 6 �K3, a 5� deviation from the null result
expected for a signal without any non-Gaussian compo-
nents. The skewness of the CMB temperature distribution
in our filtered, processed maps is visible in the pixel value
histogram shown in Fig. 2 (along with a Gaussian curve
overlaid for comparison). It is evident that the Gaussian
CMB has been recovered on the positive side by point
source masking, with the apparent truncation beyond
50 �K due to the minute probability of such temperatures
in the Gaussian distribution. The likelihood corresponding
to our measurement of the skewness is shown in Fig. 3.

The Gaussian statistics assumed error on the skewness
includes only Gaussian sources of noise. We calculate
this error by using map simulations that consist of
Gaussian random fields with the same power spectrum
as that observed in the data, including beam effects.

These simulations contain Gaussian contributions from
IR, SZ, and radio sources, the primordial lensed CMB,
and detector noise. This estimate thus does not include
the error resulting from non-Gaussian corrections, which
(after source subtraction) are due to the non-Gaussian tSZ
signal. Though CMB lensing is also a non-Gaussian effect,
it does not contribute to the error on the skewness, as the
connected part of the six-point function is zero to lowest
order in the lensing potential, and the connected part of the
three-point function is also negligibly small (see Ref. [34]
and references therein).
We calculate errors that include non-Gaussian correc-

tions by constructing more realistic simulations. To con-
struct such simulations, we add maps with simulated tSZ
signal from Ref. [35], which assume �8 ¼ 0:8, to realiza-
tions of a Gaussian random field which has a spectrum such
that the power spectrum of the combined map matches that
observed in the ACT temperature data. Given the simulated
sky area, we obtain 39 statistically independent simulated
maps, each of size 148 deg2. By applying an identical
procedure to the simulations as to the data, measuring the
scatter amongst the patches, and appropriately scaling the
error to match the 237 deg2 of unmasked sky in the pro-
cessed map, we obtain a full error (including non-Gaussian
corrections) on the unnormalized skewness of 14 �K3.
While this error is a robust estimate it should be noted
that the ‘‘error on the error’’ is not insignificant due to
the moderate simulated volume available. The scatter of
skewness values measured from each of the simulated
maps is consistent with a Gaussian distribution. The esti-
mate for the full error is coincidentally the same as the
standard error, 14 �K3, estimated from the six patches into
which the data are divided. The full error is used below
in deriving cosmological constraints from the skewness
measurement.

B. The origin of the signal

Is the skewness dominated by massive clusters with
large tSZ decrements—as suggested by theoretical consid-
erations described earlier—or by more numerous, less

FIG. 2 (color online). Histogram of the pixel temperature
values in the filtered, masked ACT CMB temperature maps.
A Gaussian curve is overlaid using a (red) line.

FIG. 3 (color online). Likelihood of the skewness measure-
ment described in the text (with Gaussian statistics assumed).
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massive clusters? To investigate this question, we mask
clusters in our data which were found in the 148 GHz maps
using a matched filter as in Ref. [36]. All clusters detected
above a threshold significance value are masked; we vary
this threshold and measure the remaining skewness in
order to determine the origin of the signal.

Figure 4 shows a plot of the signal against the cluster
detection significance cutoff.We include calculations using
both the full cluster candidate catalog obtained via matched
filtering and a catalog containing only clusters confirmed
optically using themethodology ofMenanteau et al. [37] on
the Sloan Digital Sky Survey Stripe 82 [38]. The Sloan
Digital Sky Survey Stripe 82 imaging data cover� 80% of
the total map area, and thus some skewness signal will
necessarily arise from objects not accounted for in this
catalog. The results for these two catalogs agree when
masking clusters with S=N � 7, but differ slightly when
masking lower S/N clusters. This effect is likely due to the
small shortfall in optical followup area as well as a small
number of false detections (i.e., impurity) in the candidate
clusters that have not yet been optically followed up.

Using either catalog, Fig. 4 implies that just under half
of the tSZ skewness is obtained from clusters that lie below
a 5� cluster detection significance, while the remainder
comes from the brightest and most massive clusters. The
results of Marriage et al. [36] suggest that clusters detected
at 5� significance are roughly characterized by a mass
M500 ¼ 5� 1014M�=h, where M500 is the mass enclosed
within a radius such that the mean enclosed density is
500 times the critical density at the cluster redshift.

This value corresponds to a virial mass of roughly
M ¼ 9� 1014M�=h, which was also found to be the
mass detection threshold for high-significance ACT
clusters in Ref. [37]. Figure 4 thus demonstrates that
roughly half of the tSZ skewness signal is due to massive
clusters withM * 1015M�=h. The theoretical calculations
described earlier give similar results for the fraction of
the signal coming from clusters above and below this
mass scale, which is significantly higher than the character-
istic mass scale responsible for the tSZ power spectrum
signal.
Finally, the positive value in the full candidate catalog

line shown in Fig. 4 when masking clusters above S=N ¼ 4
is consistent with zero. When masking at this level
(with the candidate catalog which contains some impurities),
we slightly cut into the negative pixel values in the
Gaussian component of Fig. 2, leading to a small spurious
positive skewness. For the points we plot, we calculate that
this bias is only non-negligible for the S=N ¼ 4 cut, where
it is � 4 �K3. This bias effectively explains the small
positive offset seen in Fig. 4. However, we discuss positive
skewness due to any possible residual point source con-
tamination below. Overall, the dependence of the measured
skewness on cluster masking shown in Fig. 4 provides
strong evidence that it is caused by the tSZ effect.

C. Testing for systematic infrared source contamination

Despite our efforts to remove point sources, a small
residual point source contamination of the signal could
remain, leading to an underestimate of the amplitude of
the tSZ skewness. To investigate this systematic error
source, we vary the level at which point sources are masked
in the 218 GHz maps [the original level is 3.2 times the
standard deviation of the pixel values in the filtered
148 GHz map (3:2�), as described above]. The results of
this test are shown in Fig. 5, which uses the full catalog of
cluster candidates as described in Fig. 4, since the optically
confirmed catalog does not yet cover the entire ACT map.
Note that masking at 3:2� results in a skewness measure-
ment which agrees with its apparent asymptotic limit as the
IR contamination is reduced, within the expected fluctua-
tions due to masking. While a slightly more negative
skewness value can be measured for some masking levels
stricter than the 3:2� level chosen in the analysis, fluctua-
tions upon changing the unmasked area of the sky are
expected, so it can not be rigorously inferred that IR
contamination is reduced between 3:2� and 2:65�.
Figure 5 suggests that masking at the 3:2� level suffi-
ciently removes any contamination by IR sources, and
stricter cuts will reduce the map area and increase statisti-
cal errors unnecessarily.
However, to further estimate the residual point source

contamination in the 148 GHz maps, we process simula-
tions of IR sources from Ref. [33] (with source amplitudes
scaled down by 1.7 to match recent observations, as in

FIG. 4 (color online). Plot of the skewness signal as a function
of the minimum S/N of the clusters that are masked (this
indicates how many known clusters are left in the data, un-
masked). The blue (upper) line is calculated using the full cluster
candidate catalog obtained via matched filtering, while the green
(lower) line uses a catalog containing only optically confirmed
clusters [38]. Both lines have identical errors, but we only plot
them for the green (lower) line for clarity. Confirmed clusters
source approximately two-thirds of the signal, which provides
strong evidence that it is due to the tSZ effect. Note that one
expects a positive bias of � 4 �K3 for the S=N ¼ 4 point of the
blue (upper) line due to impurities in the full candidate catalog
masking the tail of the Gaussian distribution.
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Ref. [39]) with the same masking procedure as that applied
to the data (described in Sec. III B), creating a mask in a
simulated 218 GHz map, and applying it to a simulated
IR source signal at 148 GHz. We find a residual signal of
h ~T3i ¼ 3:9� 0:1 �K3. We treat this result as a bias in
deriving cosmological constraints from the tSZ skewness
in the following section.

We also investigate a linear combination of the 148 and
218 GHz maps that should have minimal IR source levels,
namely, an appropriately scaled 218 GHz map subtracted
from a 148 GHz map. Assuming that the spatial distribu-
tion of the point sources is not affected by the difference in
observation frequency between 148 and 218 GHz and a
single spectral index can be applied to all sources, a simple
factor of � 3:2 [13] relates a point source’s signal in the
two different frequency bands. We find that the appropriate
linear combination (subtracting 1=3:2 times the 220 GHz
map from the 148 GHz map) produces a signal in agree-
ment with that resulting from the previously described
masking procedure, although the additional noise present
in the 218 GHz maps slightly reduces the significance of
the detection.

V. COSMOLOGICAL INTERPRETATION

To obtain cosmological information from the measured
amplitude of the unnormalized skewness, we compare our
results with two different sets of tSZ simulations [33,35].
Both sets of simulations are run with �8 ¼ 0:8, but differ
in their treatment of the ICM. The simulation of Battaglia
et al. [35] is a fully hydrodynamic cosmological simulation

that includes subgrid prescriptions for feedback from
active galactic nuclei, star formation, and radiative cooling.
The simulation also captures nonthermal pressure support
due to turbulence and other effects, which significantly
alters the ICM pressure profile. The simulation of Sehgal
et al. [33] is a large dark matter-only N-body simulation
that is post-processed to include gas according to a poly-
tropic prescription. This simulation also accounts for non-
thermal pressure support (though with a smaller amount
than Ref. [35]), and matches the low-redshift x-ray data
presented in Ref. [17].
We perform the same filtering and masking as that

applied to the data in order to analyze the simulation
maps. For both simulations, the filtering reduces the signal
by � 95% compared to the unfiltered value. For the simu-
lations of Battaglia et al. [35], we measure h ~T3iS ¼
�37 �K3, with negligible errors (the superscript S indi-
cates a simulated value). However, this value is complicated
by the fact that these simulations only include halos below
z ¼ 1. An analytic estimate for the skewness contribution
due to halos with z > 1 from Eq. (1) gives a 6% correction,
which yields h ~T3iS ¼ �39 �K3. For the simulations of
Sehgal et al. [33], we measure h ~T3iS ¼ �50 �K3, with
errors also negligible for the purposes of cosmological
constraints.
We combine these simulation results with our calculated

scalings of the skewness and the sixth moment with �8 to
construct a likelihood:

L ð�8Þ ¼ exp

�
�ðh ~T3iD � h ~T3ithð�8ÞÞ2

2�2
thð�8Þ

�
; (3)

where h ~T3iD is our measured skewness value and the
theoretically expected skewness as a function of �8 is
given by

h ~T3ithð�8Þ ¼ h ~T3iS
�
�8

0:8

�
�3

: (4)

The likelihood in Eq. (3) explicitly accounts for the fact
that �2

th, the variance of the skewness, depends on �8—a

larger value of �8 leads to a larger expected variance in the
tSZ skewness signal. In particular, the variance of the tSZ
skewness is described by a sixth moment, so it scales as
��6

8 . As determined above, the Gaussian and non-Gaussian

errors on the skewness are 6 �K3 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
142 � 62

p
�K3 ¼

12:6 �K3, respectively. We approximate the dependence
of the full error on �8 by assuming that only the non-
Gaussian component scales with�8; while this is not exact,
as some of the Gaussian error should also scale with �8,
small differences in the size or scaling of the Gaussian
error component cause negligible changes in our con-
straints on �8.
Finally, although we have argued previously that IR

source contamination is essentially negligible, we explic-
itly correct for the residual bias as calculated in the

FIG. 5 (color online). A test for IR source contamination:
similar to the blue line in Fig. 4, but with a range of values of
the cutoff used to construct an IR source mask in the 218 GHz
band. From top to bottom at S=N ¼ 4, the lines correspond to
increasingly strict cutoffs of 5.3 sigma, 4.2 sigma, 3.2 sigma, 2.65
sigma, 2.1 sigma, and 1.6 sigma, respectively. Any cutoff below
� 3:2� gives similarly negative results and thus appears suffi-
cient for point source removal, where � ¼ 10:3 �K is the
standard deviation of the 148 GHz maps. For comparison, the
standard deviation of the 218 GHz maps is � 2:2 times larger.
The percentages of the map which are removed for the masking
levels shown, from the least to the most strict cut, are 0.7, 2.5,
8.4, 14.5, 23.7, and 36.6%.
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previous section. Thus, we replace h ~T3iD ¼ �31 �K3

with h ~T3iDcorr ¼ �31� 3:9 �K3 in Eq. (3). (Note that
this bias correction only shifts the central value derived
for �8 below by roughly one-fifth of the 1� confidence
interval). Moreover, in order to be as conservative as
possible, we also model the effect of residual point
sources by including an additional IR contamination error
(with the same value as the residual IR source contamina-
tion, 3:9 �K3) in our expression for the variance of the
skewness:

�2
thð�8Þ¼62 �K6þ12:62

�
�8

0:8

�
�6

�K6þ3:92 �K6: (5)

Using the likelihood in Eq. (3), we obtain confidence
intervals and derive a constraint on �8. Our likelihood
and hence our constraints depend, in principle, on which
simulation we use to calculate h ~T3iS, as well as on the
values we choose for �3 and �6. Using the simulations of
Battaglia et al. [35] and the scalings determined above
for the profile from Ref. [16], we find �8 ¼ 0:79þ0:03

�0:03

(68% C.L.)þ0:06
�0:06 (95% C.L.). In Table I, we compare the

constraints on �8 obtained from the use of different
scalings and simulated skewness values; the constraints
are insensitive to both the pressure profile used to derive
the scaling laws and the choice of simulation used to
compute the skewness.

For comparison, the final release from the Chandra
Cluster Cosmology Project found �8 ¼ 0:803� 0:0105,
assuming �m ¼ 0:25 (there is a strong degeneracy
between �8 and �m for x-ray cluster measurements that
probe the mass function) [40]. Perhaps more directly com-
parable, recent studies of the tSZ power spectrum have
found �8 ¼ 0:77� 0:04 (statistical error only) [13] and
�8 ¼ 0:807� 0:016 (statistical error and approximately
estimated systematic error due to theoretical uncertainty)
[41]. Our results are also comparable to recent constraints
using number counts of SZ-detected clusters fromACTand
the South Pole Telescope, which found �8 ¼ 0:851�
0:115 (fully marginalizing over uncertainties in the

mass-SZ flux scaling relation) [42] and �8 ¼ 0:807�
0:027 (marginalizing over uncertainties in an x-ray-based
mass-SZ flux scaling relation) [43], respectively. Although
more than half of the tSZ skewness signal that we measure
is sourced by detected clusters (i.e., the same objects used
in the number counts analyses), our method also utilizes
cosmological information from clusters that lie below the
individual detection threshold, which gives it additional
statistical power. Finally, note that we have fixed all other
cosmological parameters in this analysis, as�8 is by far the
dominant parameter for the tSZ skewness [44]. However,
marginalizing over other parameters will slightly increase
our errors.
To evaluate the theoretical systematic uncertainty in the

amplitude of the filtered skewness due to unknown ICM
astrophysics, we test the effect of different gas prescrip-
tions by analyzing simulations from Ref. [35] with all
forms of feedback, radiative cooling, and star formation
switched off, leading to an adiabatic ICM gas model. For
these adiabatic simulations we find h ~T3iS ¼ �56 �K3

(after applying the 6% correction mentioned earlier),
which for the skewness we measure in our data would
imply �8 ¼ 0:77þ0:02

�0:02 (68% C.L.) þ0:05
�0:05 (95% C.L.).

Turning off feedback and all subgrid physics is a rather
extreme case, so the systematic theoretical uncertainty for
a typical simulation with some form of feedback should be
slightly smaller than the statistical error from the measure-
ment, though still non-negligible. This contrasts with
measurements of�8 via the tSZ power spectrum, for which
the theoretical systematic uncertainty is comparable to or
greater than the statistical uncertainty [13,41]. As high-
lighted earlier, this difference can be traced to the depen-
dence of the power spectrum amplitude on the ICM
astrophysics within low-mass, high-redshift clusters. The
skewness, on the other hand, is dominated by more
massive, lower-redshift clusters that are less affected by
uncertain nongravitational feedback mechanisms and are
more precisely constrained by observations. Nonetheless,
as the statistical uncertainty decreases on future measure-
ments of the tSZ skewness, the theoretical systematic
error will quickly become comparable, and thus additional
study of the ICM electron pressure profile will be very
useful.

VI. CONCLUSIONS

As the thermal Sunyaev-Zel’dovich field is highly non-
Gaussian, measurements of non-Gaussian signatures such
as the skewness can provide cosmological constraints that
are competitive with power spectrum measurements. We
have presented a first measurement of the unnormalized
skewness h ~T3ðn̂Þi in ACT CMB maps filtered for high
signal to noise. As this is a purely non-Gaussian signature,
primordial CMB and instrumental noise cannot be con-
fused with or bias the signal, unlike measurements of the
tSZ power spectrum. We measure the skewness at 5�

TABLE I. Constraints on �8 derived from our skewness mea-
surement using two different simulations and three different
scalings of the skewness and its variance with �8. The top row
lists the simulations used to calculate the expected skewness for
�8 ¼ 0:8 [33,35]; the left column lists the pressure profiles used
to calculate the scaling of the skewness and its variance with �8

[16,17,25]. The errors on �8 shown are the 68 and 95%
confidence levels.

Battaglia h ~T3iS Sehgal h ~T3iS
Battaglia �3, �6 0:79þ0:03þ0:06

�0:03�0:06 0:77þ0:03þ0:05
�0:02�0:05

Arnaud �3, �6 0:79þ0:03þ0:06
�0:03�0:06 0:77þ0:02þ0:05

�0:02�0:05

K-S �3, �6 0:79þ0:03þ0:07
�0:03�0:06 0:77þ0:03þ0:06

�0:03�0:05
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significance: h ~T3ðn̂Þi ¼ �31� 6 �K3 (Gaussian statistics
assumed). Including non-Gaussian corrections increases
the error to �14 �K3. Using analytic calculations and
simulations to translate this measurement into constraints
on cosmological parameters, we find �8 ¼ 0:79þ0:03

�0:03

(68% C.L.) þ0:06
�0:06 (95% C.L.), with a slightly smaller but

non-negligible systematic error due to theoretical uncer-
tainty in the ICM astrophysics. This detection represents
the first realization of a new, independent method to mea-
sure �8 based on the tSZ skewness, which has different
systematic errors than several other common methods.
With larger maps and lower noise, tSZ skewness measure-
ments promise significantly tighter cosmological con-
straints in the near future.
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