26 research outputs found

    Birth of a Photosynthetic Chassis: A MoClo Toolkit Enabling Synthetic Biology in the Microalga Chlamydomonas reinhardtii.

    Get PDF
    Microalgae are regarded as promising organisms to develop innovative concepts based on their photosynthetic capacity that offers more sustainable production than heterotrophic hosts. However, to realize their potential as green cell factories, a major challenge is to make microalgae easier to engineer. A promising approach for rapid and predictable genetic manipulation is to use standardized synthetic biology tools and workflows. To this end we have developed a Modular Cloning toolkit for the green microalga Chlamydomonas reinhardtii. It is based on Golden Gate cloning with standard syntax, and comprises 119 openly distributed genetic parts, most of which have been functionally validated in several strains. It contains promoters, UTRs, terminators, tags, reporters, antibiotic resistance genes, and introns cloned in various positions to allow maximum modularity. The toolkit enables rapid building of engineered cells for both fundamental research and algal biotechnology. This work will make Chlamydomonas the next chassis for sustainable synthetic biology

    No detectable genetic correlation between male and female mating frequency in the stalk eyed fly Cyrtodiopsis dalmanni.

    No full text
    There is much interest in explaining why female insects mate multiply. Females of the stalk-eyed fly Cyrtodiopsis dalmanni can mate several times each day in a lifetime which may span several months. There are many adaptive explanations, but one hypothesis that has received little rigorous empirical attention is that female multiple mating has evolved for non-adaptive reasons as a correlated response to selection for high male mating frequency rather than because of direct or indirect benefits accruing to females. We tested this hypothesis in stalk-eyed flies by measuring the mating frequency of females from lines that exhibited a direct response in males to artificial selection for increased ('high') and decreased ('low') male mating frequency. We found that the mating frequency of high-line females did not differ from that of low-line females. Hence, there was no support for a genetic correlation between male and female mating frequency in this species. Our study suggests that the genes which influence remating may not be the same in the sexes, and that females remate frequently in this species to gain as yet unidentified benefits
    corecore