15 research outputs found

    ZrTiO4 Nanowire Growth Using Membrane-assisted Pechini Route

    Get PDF
    The high surface-to-volume ratio of nanowires makes them natural competitors as newer device components. In this regard, a current major challenge is to produce quasi-one-dimensional nanostructures composed of well-established oxide-based materials. This article reports the synthesis of ZrTiO4 nanowires on a silicon (100) wafer in a single-step deposition/thermal treatment. The template-directed membrane synthesis strategy was associated with the Pechini route and spin-coating deposition technique. ZrTiO4 nanowires were obtained at 700 °C with diameters in the range of 80-100 nm. FEGSEM images were obtained to investigate ZrTiO4 nanowire formation on the silicon surface and energy dispersive X-ray detection (EDS) and X-ray diffraction (XRD) analyses were performed to confirm the oxide composition and structure. DOI: http://dx.doi.org/10.17807/orbital.v1i1.711

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Obtenção de materiais orgânicos conjugados com corantes fluorescentes para a marcação de nanocápsulas poliméricas com potencial aplicação em diagnóstico e terapêutica

    No full text
    Sistemas nanocarreadores de moléculas orgânicas têm emergido como promissores sistemas para aplicação na terapêutica e/ou diagnóstico. No presente trabalho foram desenvolvidas nanocápsulas poliméricas contendo, em seus diferentes domínios, sondas fluorescentes capazes de fornecer imagem quando analisadas em microscópio de fluorescência confocal, mostrando as potencialidades do sistema como agente para imagem ótica. Uma importante característica de moléculas propostas como marcadores fluorescentes, é que não haja sobreposição dos espectros de absorção e emissão de fluorescência. Para tanto, foi utilizado um corante sintético do grupo dos benzoxazólicos (HBO-C8) para marcação do núcleo lipofílico, e os polímeros PCL e quitosana foram ligados covalentemente aos corantes rodamina B e alaranjado de acridina, respectivamente. As formulações desenvolvidas e caracterizadas com dois ou três marcadores apresentaram caráter nanotecnológico e as fotomicrografias de transmissão revelaram que as nanopartículas contendo HBO-C8 e PCL-Rho (sem quitosana), preservou a morfologia da nanopartícula. Adicionalmente, o HBO-C8 foi quantificado na formulação contendo HBO-C8 e PCL-Rho, onde verificou-se que 98% do corante está internalizado na nanopartícula, alcançando assim, o objetivo proposto de usá-lo como sonda para marcação do núcleo lipofílico. Por meio da microscopia de fluorescência confocal, foram obtidas imagens dos marcadores fluorescentes colocalizados, para as formulações contendo dois ou três domínios fluorescentes, demonstrando que essas nanocápsulas podem ser propostas como uma plataforma promissora para serem empregadas como sondas para imagem ótica.Nanocarriers systems of organic molecules have emerged as promising systems for application in therapy and diagnosis. In the present study polymeric nanocapsules containing fluorescent probes in their different domains, capable of providing image when analyzed in confocal fluorescence microscope, showing the potential of the system as an agent for optical imaging. An important feature of proposed molecules as fluorescent probes, there is no overlap of the spectra of absorption and fluorescence emission. Thus, a group of synthetic dye benzoxazólicos (HBO-C8) to mark the lipophilic core, and PCL and chitosan polymers were covalently linked to dye rhodamine B and acridine orange , respectively. The formulations developed and characterized with two or three markers showed nanotechnological character and transmission photomicrographs showed that nanoparticles containing PCL-Rho and HBO-C8 (without chitosan) preserved morphology of the nanoparticle. Additionally, the HBO-C8 was was quantified on formulation contained HBO-C8 and PCL-Rho, where it was found that 98% of the dye is internalized in the nanoparticle thus reaching the purpose proposed to use as a probe for marking the lipophilic core . By images of confocal fluorescence microscopy were obtained the colocalized of fluorescent markers to formulations containing two or three fluorescent domains, demonstrating that these nanocapsules can be proposed as a promising platform to be used as probes for optical image

    Arginylglycylaspartic Acid-Surface-Functionalized Doxorubicin-Loaded Lipid-Core nanocapsules as a strategy to target Alpha(V) Beta(3) integrin expressed on tumor cells

    Get PDF
    Doxorubicin (Dox) clinical use is limited by dose-related cardiomyopathy, becoming more prevalent with increasing cumulative doses. Previously, we developed Dox-loaded lipid-core nanocapsules (Dox-LNC) and, in this study, we hypothesized that self-assembling and interfacial reactions could be used to obtain arginylglycylaspartic acid (RGD)-surface-functionalized-Dox-LNC, which could target tumoral cells overexpressing v 3 integrin. Human breast adenocarcinoma cell line (MCF-7) and human glioblastoma astrocytoma (U87MG) expressing different levels of v 3 integrin were studied. RGD-functionalized Dox-LNC were prepared with Dox at 100 and 500 mg mL1 (RGD-MCMN (Dox100) and RGD-MCMN (Dox500)). Blank formulation (RGD-MCMN) had z-average diameter of 162 6 nm, polydispersity index of 0.11 0.04, zeta potential of +13.2 1.9 mV and (6.2 1.1) 1011 particles mL1, while RGD-MCMN (Dox100) and RGD-MCMN (Dox500) showed respectively 146 20 and 215 25 nm, 0.10 0.01 and 0.09 0.03, +13.8 2.3 and +16.4 1.5 mV and (6.9 0.6) 1011 and (6.1 1.0) 1011 particles mL1. RGD complexation was 7.73 104 molecules per nanocapsule and Dox loading were 1.51 104 and 7.64 104 molecules per nanocapsule, respectively. RGD-functionalized nanocapsules had an improved uptake capacity by U87MG cells. Pareto chart showed that the cell viability was mainly affected by the Dox concentration and the period of treatment in both MCF-7 and U87MG. The influence of RGD-functionalization on cell viability was a determinant factor exclusively to U87MG

    Arginylglycylaspartic Acid-Surface-Functionalized Doxorubicin-Loaded Lipid-Core nanocapsules as a strategy to target Alpha(V) Beta(3) integrin expressed on tumor cells

    Get PDF
    Doxorubicin (Dox) clinical use is limited by dose-related cardiomyopathy, becoming more prevalent with increasing cumulative doses. Previously, we developed Dox-loaded lipid-core nanocapsules (Dox-LNC) and, in this study, we hypothesized that self-assembling and interfacial reactions could be used to obtain arginylglycylaspartic acid (RGD)-surface-functionalized-Dox-LNC, which could target tumoral cells overexpressing v 3 integrin. Human breast adenocarcinoma cell line (MCF-7) and human glioblastoma astrocytoma (U87MG) expressing different levels of v 3 integrin were studied. RGD-functionalized Dox-LNC were prepared with Dox at 100 and 500 mg mL1 (RGD-MCMN (Dox100) and RGD-MCMN (Dox500)). Blank formulation (RGD-MCMN) had z-average diameter of 162 6 nm, polydispersity index of 0.11 0.04, zeta potential of +13.2 1.9 mV and (6.2 1.1) 1011 particles mL1, while RGD-MCMN (Dox100) and RGD-MCMN (Dox500) showed respectively 146 20 and 215 25 nm, 0.10 0.01 and 0.09 0.03, +13.8 2.3 and +16.4 1.5 mV and (6.9 0.6) 1011 and (6.1 1.0) 1011 particles mL1. RGD complexation was 7.73 104 molecules per nanocapsule and Dox loading were 1.51 104 and 7.64 104 molecules per nanocapsule, respectively. RGD-functionalized nanocapsules had an improved uptake capacity by U87MG cells. Pareto chart showed that the cell viability was mainly affected by the Dox concentration and the period of treatment in both MCF-7 and U87MG. The influence of RGD-functionalization on cell viability was a determinant factor exclusively to U87MG
    corecore