3,643 research outputs found

    Prediction of rigid silica based insulation conductivity

    Get PDF
    A method is presented for predicting the thermal conductivity of low density, silica based fibrous insulators. It is shown that the method can be used to extend data values to the upper material temperature limits from those obtained from the test data. It is demonstrated that once the conductivity is accurately determined by the analytical model the conductivity for other atmospheres can be predicted. The method is similar to that presented by previous investigators, but differs significantly in the contribution due to gas and internal radiation

    Theoretical and experimental studies of error in square-law detector circuits

    Get PDF
    Square law detector circuits to determine errors from the ideal input/output characteristic function were investigated. The nonlinear circuit response is analyzed by a power series expansion containing terms through the fourth degree, from which the significant deviation from square law can be predicted. Both fixed bias current and flexible bias current configurations are considered. The latter case corresponds with the situation where the mean current can change with the application of a signal. Experimental investigations of the circuit arrangements are described. Agreement between the analytical models and the experimental results are established. Factors which contribute to differences under certain conditions are outlined

    Rehybridization of electronic structure in compressed two-dimensional quantum dot superlattices

    Get PDF
    Two-dimensional superlattices of organically passivated 2.6-nm silver quantum dots were prepared as Langmuir monolayers and transferred to highly oriented pyrolytic graphite substrates. The structural and electronic properties of the films were probed with variable temperature scanning tunneling microscopy. Particles passivated with decanethiol (interparticle separation distance of ∼1.1±0.2 nm) exhibited Coulomb blockade and staircase. For particles passivated with hexanethiol or pentanethiol (interparticle separation distance of ∼0.5±0.2 nm), the single-electron charging was quenched, and the redistribution of the density of states revealed that strong quantum mechanical exchange, i.e., wave-function hybridization, existed among the particles in these films

    Dispositional mindfulness and employment status as predictors of resilience in third year nursing students: a quantitative study

    Get PDF
    This is an open access article under the terms of the Creative Commons Attribution license, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Background Nursing students will graduate into stressful workplace environments and resilience is an essential acquired ability for surviving the workplace. Few studies have explored the relationship between resilience and the degree of innate dispositional mindfulness, compassion, compassion fatigue and burnout in nursing students, including those who find themselves in the position of needing to work in addition to their academic responsibilities. Aim This paper investigates the predictors of resilience, including dispositional mindfulness and employment status of third year nursing students from three Australian universities. Design Participants were 240 undergraduate, third year, nursing students. Participants completed a resilience measure (Connor–Davidson Resilience Scale, CD-RISC), measures of dispositional mindfulness (Cognitive and Affective Mindfulness Scale Revised, CAMS-R) and professional quality of life (The Professional Quality of Life Scale version 5, PROQOL5), such as compassion satisfaction, compassion fatigue and burnout. Method An observational quantitative successive independent samples survey design was employed. A stepwise linear regression was used to evaluate the extent to which predictive variables were related each to resilience. Results The predictive model explained 57% of the variance in resilience. Dispositional mindfulness subset acceptance made the strongest contribution, followed by the expectation of a graduate nurse transition programme acceptance, with dispositional mindfulness total score and employment greater than 20 hours per week making the smallest contribution. This was a resilient group of nursing students who rated high with dispositional mindfulness and exhibited hopeful and positive aspirations for obtaining a position in a competitive graduate nurse transition programme after graduation

    Voltage-controlled electron tunnelling from a single self-assembled quantum dot embedded in a two-dimensional-electron-gas-based photovoltaic cell

    Full text link
    We perform high-resolution photocurrent (PC) spectroscopy to investigate resonantly the neutral exciton ground-state (X0) in a single InAs/GaAs self-assembled quantum dot (QD) embedded in the intrinsic region of an n-i-Schottky photodiode based on a two-dimensional electron gas (2DEG), which was formed from a Si delta-doped GaAs layer. Using such a device, a single-QD PC spectrum of X0 is measured by sweeping the bias-dependent X0 transition energy through that of a fixed narrow-bandwidth laser via the quantum-confined Stark effect (QCSE). By repeating such a measurement for a series of laser energies, a precise relationship between the X0 transition energy and bias voltage is then obtained. Taking into account power broadening of the X0 absorption peak, this allows for high-resolution measurements of the X0 homogeneous linewidth and, hence, the electron tunnelling rate. The electron tunnelling rate is measured as a function of the vertical electric field and described accurately by a theoretical model, yielding information about the electron confinement energy and QD height. We demonstrate that our devices can operate as 2DEG-based QD photovoltaic cells and conclude by proposing two optical spintronic devices that are now feasible.Comment: 34 pages, 11 figure

    Formulae for Askey-Wilson moments and enumeration of staircase tableaux

    Full text link

    Current-Controlled Negative Differential Resistance due to Joule Heating in TiO2

    Full text link
    We show that Joule heating causes current-controlled negative differential resistance (CC-NDR) in TiO2 by constructing an analytical model of the voltage-current V(I) characteristic based on polaronic transport for Ohm's Law and Newton's Law of Cooling, and fitting this model to experimental data. This threshold switching is the 'soft breakdown' observed during electroforming of TiO2 and other transition-metal-oxide based memristors, as well as a precursor to 'ON' or 'SET' switching of unipolar memristors from their high to their low resistance states. The shape of the V(I) curve is a sensitive indicator of the nature of the polaronic conduction.Comment: 13 pages, 2 figure

    Top Management Team Diversity: A systematic Review

    Get PDF
    Empirical research investigating the impact of top management team (TMT) diversity on executives’ decision making has produced inconclusive results. To synthesize and aggregate the results on the diversity-performance link, a meta-regression analysis (MRA) is conducted. It integrates more than 200 estimates from 53 empirical studies investigating TMT diversity and its impact on the quality of executives’ decision making as reflected in corporate performance. The analysis contributes to the literature by theoretically discussing and empirically examining the effects of TMT diversity on corporate performance. Our results do not show a link between TMT diversity and performance but provide evidence for publication bias. Thus, the findings raise doubts on the impact of TMT diversity on performance

    Some inequalities for the Tutte polynomial

    Get PDF
    We prove that the Tutte polynomial of a coloopless paving matroid is convex along the portions of the line segments x+y=p lying in the positive quadrant. Every coloopless paving matroids is in the class of matroids which contain two disjoint bases or whose ground set is the union of two bases of M*. For this latter class we give a proof that T_M(a,a) <= max {T_M(2a,0), T_M(0,2a)} for a >= 2. We conjecture that T_M(1,1) <= max {T_M(2,0), T_M(0,2)} for the same class of matroids. We also prove this conjecture for some families of graphs and matroids.Comment: 17 page

    Spatial Hypersurfaces in Causal Set Cosmology

    Full text link
    Within the causal set approach to quantum gravity, a discrete analog of a spacelike region is a set of unrelated elements, or an antichain. In the continuum approximation of the theory, a moment-of-time hypersurface is well represented by an inextendible antichain. We construct a richer structure corresponding to a thickening of this antichain containing non-trivial geometric and topological information. We find that covariant observables can be associated with such thickened antichains and transitions between them, in classical stochastic growth models of causal sets. This construction highlights the difference between the covariant measure on causal set cosmology and the standard sum-over-histories approach: the measure is assigned to completed histories rather than to histories on a restricted spacetime region. The resulting re-phrasing of the sum-over-histories may be fruitful in other approaches to quantum gravity.Comment: Revtex, 12 pages, 2 figure
    corecore