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ABSTRACT

A method is presented for predicting the thermal conductivity of low density, silica based fibrous

insulators. It is shown that the method can be used to extend data values to the upper material

temperature limits from those obtained from test data. It is demonstrated that once the conductivity

is accurately determined by the analytical model the conductivity for other atmospheres can be

predicted. The method is similar to that presented by previous investigators, but differs significantly

in the contribution due to gas and internal radiation.

INTRODUCTION

A nonlinear least squares technique was used to determine the effective thermal conductivity of an insulating

material from a transient thermal response test. 1 In this analysis it was assumed that the material would have

several in-depth thermocouples, with constant surface temperature at constant pressure test conditions. The

objective of this analysis was to calculate coefficients to a polynomial expression representing the thermal

conductivity at the specified pressure condition that was valid over the test temperature range. A cubic was

selected since this would permit the approximation of the conductivity due to conduction of the solid, collision

of the gas molecules with the cell walls in the porous media, and internal radiation. The disadvantages of this

approach are that it requires accurate placement of the thermocouples, thermal/vacuum test facilities,

sophisticated data acquisition equipment, and that it cannot be used for predicting conductivity values at other

conditions. The advantages are that it is relatively inexpensive, reliable, can produce results in a short time

frame, and agrees well with data obtained from conventional test techniques.

Other techniques have been developed that are more analytical in nature. In 1971 Dresher and Pike 2 proposed

a model that was a linear function of solid, gas conduction and radiation. This model considers the solid

volume fraction of the fiber bundle and uses this to proportion the contribution to each component.

In 1975 Klett 3 developed a model and computer program that would aid in the design of an insulating material.

Through the use of this program, the analyst can investigate the effects of density, cell size, and cell structure.

This model may be classified as a parallel network model, as opposed to the series network model proposed
by Dresher and Pike. 2 This model also assumes that the conductivity can be segregated into three components:

solid conduction, gas conduction, and radiation. The gas conduction term is expressed as a function of the

effective cell size and mean free path of the gas. The main disadvantage in using this method is the use of an

absorption coefficient for the material used for predicting the contribution due to radiation. The data for the

absorption coefficient is not readily available, which makes conductivity relatively difficult to determine.

Data for material properties and gases were entered in tabular form.

In 1977 Striepens 4 presented a series network model used for approximating the thermal conductivity of

refractory blown fibrous insulations. It was assumed that the solid conductivity could be considered aconstant.

The gas conduction term, similar to most techniques, was a function of the effective pore size and mean free

path of the gas. The radiation term was expressed as a function of backscattering cross section, thickness of

the insulation, and the emittance of the bounding surfaces. The main disadvantages of this method were due

to a poor estimation to the solid conductivity, and radiation contribution dependent on material thickness and

backscattering cross section. A subsequent modification removed the dependence on material thickness.

However, backscattering data is not readily available and requires detailed experimental data collection and

analysis.



In 1985StewartandLeiser5 presenteda technique for characterizing rigid fibrous reusable insulation

materials based on the model proposed by Dresher and Pike. 2 The advantage of this approach is in developing

the model from morphological data to establish parameters for predicting conductivity values. In particular,

they were able to approximate the solid conductivity in two directions based on the measured tensile strength.

The gas conduction term was a function of the effective pore size, and mean free path of the gas. The radiation

term, based on the derivation by Dresher and Pike, 2 is a function of effective pore size and solid volume
fraction.

The initial effort in this investigation was based on a computer program supplied by Stewart and Leiser. 5 The

primary approach in the proposed method, as distinct from previous methods are: the use of solid conductivity

approximation in the weak direction proposed by Stewart and Leiser, 5 but modified for predictions in the

strong direction; a correction term for gas conduction; and the characterization of the radiative contribution

from the separate components that constitute the insulation material. This permits the effective emittance for

each class of fibers to be determined independently of other fiber components.

DISCUSSION

The study of heat flow through porous insulating materials has been an ongoing effort for over 100 years. This

effort has included experimental and analytical investigations used to develop the theory and application for

thermal insulation. Good insulators are classified into different categories, but for thermal modeling the most

convenient classification is based on the physical structure of the insulator. Fibrous insulations can be made

of loose or bonded fibers in either a random or preferential orientation, i.e., fiberboard, mats, and wools.

Granular insulations can be in either a loose or bonded form, i.e., pumice, sand, diatomaceous powders, and

microspheres. Cellular insulation is a continuous solid containing either open or closed cells. Closed cells are

completely enclosed and are highly resistant to air movement, i.e., wood and cork. Open cells permit the

movement of gas more readily than closed cells, and the voids are connected and allow gases to flow through

the material. Fiber reinforced foam, Min-K, LI-900, and FRCI-12 are examples of materials made from

granular powders and fibers. LI-900 is a porous material composed of silica fibers, while FRCI- 12 is a porous

material composed of silica and alumina-boria-silica (Nextel) fibers.

The proposed mathematical model is similar to that presented by Dresher and Pike. 2 It is assumed that the

conductivity can be expressed as a linear function of the contributions due to solid, gas, and radiation:

k=kso +k 9 , (l)

where kso is the conductivity due to the solid, kg is the conductivity due to the gas, and kr is the conductivity
due to the internal radiation and absorption. This can be rewritten as

I I I

k=Sk o+(l-S)kg+S -Ik , (2)

where S is the solid volume fraction. This expression treats the insulating material as a composite in which

a solid phase interacts with a gaseous phase and radiative phase to yield an overall performance in the

transmission of heat. In this formulation, the three modes of heat transfer which are of importance at high

temperatures are clearly separated. The functions which depend on the solid fraction, S, go very roughly as

S, 1 - S, and l/S, depending on the geometric structure of the porous material, k'so is the conductivity of the

bulk solid material from which the fibers are made; k'g is the conductivity of the gas which permeates the



structure;andk'r - 4doET 3 is the thermal conductivity of the infrared radiation and absorption in the pore

spaces, with drepresenting the pore size, fiber diameter or other morphological consideration of the insulating

material. Several other investigators have presented expressions similar to Eq. 2, see for example references
2-6.

EFFECTIVE CELL SIZE

The derivation for the parameters defining the effective cell size is taken from Stewart and Leiser 5 and is

repeated for continuity. The concept is to define the insulation material based on fiber characteristics and pore

size from measured physical properties of the fibers that go into defining material structure. It is assumed that

each fiber can be represented as a cylinder. The total number of fibers per unit mass can be defined as

Ft , E{S1, A1, ABS, SIC} (3a)
Nt ffi ±47a;12Ltpi 1

where Fi denotes the weight fraction of the fiber, Pi the fiber density, L i the fiber length, and di is the diameter

for each respective fiber. The abbreviations for the fibers are Si for silica, Al for alumina, ABS for alumina-

boria-silica (Nextel 312), and SiC for silicon carbide. In particular for silica the representation given in Eq.
3a would be

Nsl = ¼ 2_at si L slPst
(3b)

The total fiber count is the simple sum

--2N, . l s c}
1

The effective fiber length may be calculated as

Leg =N-_-_N,L, . /e{Si. AI. ABS. SIC}
i

The solid volume fraction of each material can be calculated from

(4)

, (5)

St I
Pl

. ,  u.,Bs. s c} .

where PT is the total density of the porous insulation. The solid volume fraction is then defined as

,

(6)

(7)



Thispermitsthetotalvolumefor eachfibercomponenttobedefinedby

V, = S, / S , 1 E{Si, A1, ABS, SiC} (8)

Using the definition given by Stewart and Leiser, 5 the effective pore or cell diameter may be calculated as

"I¼ S_rPr L elr Nr (9)

although this may also be considered equivalent to the effective fiber diameter.

The effective (mean) length of the cell may be approximated by

Deft

LM = Vr_/3

In contrast, Klett 3 defined the interior cell dimension, LM, as

LM _/3e2r (I-S) I/3,

(lOa)

(lOb)

where
1.)elf is the effective cell diameter, and S is the effective volume fraction defined in a manner similar

to Eq. 6, i.e., the ratio of the bulk density to the fiber density.

Striepens defined the effective pore size as

LM -- -- , (lOc)
4S

where this effective diameter is the ratio of the mean square diameter to the mean diameter of the fibers, and

S as the ratio of the bulk density to the fiber density. For LI-900 and LI-2200, this was effectively dsi.

To obtain a better concept of what we are attempting to model, it is interesting to look at the material in more

detail using Scanning Electronic Microscopy (SEM). Figure 1 shows microphotographs of some of the fibrous

insulation materials used in this investigation. It is interesting to note that even though 320 grit or 600 grit

silicon carbide particles are included in the fiber mixture for all materials except LI-900, no silicon carbide
particles are observed in these microphotographs.

SOLID CONDUCTIVITY

Stewart and Leiser 5 were able to relate the anisotropic nature of this class of insulators by approximating the

number of fibers in the weak and strong directions. The weak and strong directions of the insulation are defined

by tensile strength measurements. The assumption is made that the number of fibers under load is directly

4



proportionaltothetensile strength. It is also assumed that the conductivity in the strong and weak directions
are related to the number of fibers in the walls and the orientation of the fibers in the insulation. The ratio of

fibers in the weak or strong direction may be expressed as a function of the tensile strength and average angle

between the fibers and may be represented by

2o"

N'--[Ow (Ow) )]'+2 1- ' tan(O/2

where

' 1 N', and Nst= - w , (1 la)

(llb)

with respect to the solid fiber conductivity, ksolid, where Cw and Ost are the tensile strengths in the weak and

strong directions, respectively.

Unfortunately, this still provides too high of an estimate to the contribution by solid conductivity since not

all of the fibers provide direct conduction paths. This means that somehow the contribution of the conductivity

in each direction must be scaled. By calculating the "conduction efficiency" of the fibers, r/, Stewart and

Leiser 5 were able to approximate the contribution of the solid conductivity in the weak and strong directions

as

r/w = and r/st = r/Ntst (12a)

As was mentioned earlier, Striepens assumed the solid conductivity could be represented by a constant scaling

factor of the density, i.e.,

ksoud = C PT , (I 2b)

This may have been adequate for the limited temperature range investigated at that time, but with the LI-900

and LI-2200 series of low density rigid insulation materials, the equation was modified by Striepens and
Reeves 6 to the form

ksollct w = S _w k flbe r , ksoltd, t = S rst k free r , (12c)

where Sxw and Sxst represent the solid conduction efficiency in the weak and strong directions, respectively.

The value of lrw was calculated to be 1.56 (weak direction) and lrst was calculated as 1.39 (strong direction)
for LI-900. For LI-2200 the values were calculated as 1.83 to 1.62, respectively. To maintain consistency with

the formulation outlined in Eq. 2, a value of one would be subtracted from each of the exponents ofS (Tw or

1:st) since solid conductivity will be multiplied by the solid volume fraction. Thus, lrw - 1 and lrst - 1 are fairly

similar to r/w and r/s t proposed by Stewart and Leiser. 5



Klettdefinedtheconductivityof the cell side and end as

kso,,,,(c,b - ) Kso,,,,
kstde= if)eft ' tend = _)e2T-LM

(12d)

Klett 3 did not directly address bidirectional conductivity, but did consider cell orientation with respect to heat

flow for compressed and crushed cell structures. Thus, with minor modification his model could readily be

adapted to conduction in the strong and weak direction.

It has been observed that a separate conduction efficiency factor, determined from analysis of experimental

data, is required for each direction since Eq. 12a overpredicts the contribution in the strong direction. Thus,

if r/'w is used for the weak direction then r/'st can be used for the strong direction which modifies Eq. 12a as

f I I !
r/w = OwN= , and _st = r]stNst. (13)

In general, r/'st ranges from 50% to 80% of r/'w. It will be shown later, however, that r/st is still approximately
twice as large as r/w.

Since the solid conductivity for different fibers is represented as

kso .. EVit,, [ E{SI, AI, ABS, SIC}, (14)

one can calculate the contribution in both directions by

k' = r/ k" and k' = r]t k''
SO w W SO ' SOst S SO "

(15)

The fiber conductivities used in this analysis are from the Thermophysical Properties of Matter series on
thermal conductivity by Touloukian, Powell, Ho, and Klemens 7 (see figure 2).

GAS CONDUCTION

Many estimation procedures for the thermal conductivity of monatomic and simple molecule gases have been

developed in parallel with methods used for estimating the viscosity of gases. All such methods are based on

the expressions of thermal conductivity derived from theory and take on one of the following forms:

kgas =aT n , (16a)

aT n
kg_ = , (16b)

l+(b/T)

6



k gas
a(1 + bT )T ''2

I+(c/T)
(16c)

a4 -
k gas = (16d)

n

kgas - _ a_ T _
l=O

, (16e)

where the constants a, b, c, and n are determined in each case by forcing a particular equation to best fit the

experimental data as a function of temperature.

Stewart and Leiser 5 calculated the conductivity of air with the approximation

ka,r -a 4T- , (16f)

with a = 6.325 X 10-6 (units for conductivity are cal/cm-sec-°C, and T is in K). This is a variation ofEq. 16a,

however, it tends to overpredict reference values. Ivy and Striepens 8 approximated the conductivity of air with

the expression

a4 -
kat r -- , (16g)

1 + T 10 elf

where a = 6.3225 X 10 "6, b = 245.4, and c = 12 (T in K), which is from a NBS report, 9 and can also be found

in the reference for the 1976 U. S. Standard Atmosphere. 10 This expression tends to closely approximate the

reference values and is a modified form of Eq. 16d. On the other hand, Klett simply performed a linear

interpolation on tabular values for any gas. In this paper a least squares approximation was made to the

recommended reference values used by Touloukian, Liley, and Saxena. 11 For air this takes the form

3

kal r ,= _,a I T i .
l-0

(16h)

These coefficients (a 0 = 1.26129X 10 -6 , a 1 = 2.228759X 10 -7 , a 2=-7.988213X 10 "11,

a3 = 4.1917306 X 10-14) are selected to provide conductivity units in cal/cm-sec-°C or cal/cm-sec-K for

values of T in K. Below 150 K a straight line approximation is used (k--8.577777 X 10-8+

2.190195 X 10-7 T). A comparison of the different approximating techniques to reference data values can

be seen in figure 3.



Typically,the gas conduction term in a closed container is modified by the effects of the mean free path. The
equation most investigators use for gas conduction in the cell is

, LM .]kg = kgo.s LM +_, ,
(17)

where Z. is the mean free path of the gas.

The mean free path, k, is the average distance traveled by an atom or molecule of a gas between collisions.
It is dependent on the gas state and frame of reference from which the system is observed. For a gas at rest

in local thermodynamic equilibrium, it may be defined by the equation

, (18a)

where kt is the viscosity, p the density, T the temperature, R the universal gas constant, and M the molecular

weight. Typically, these values should be within a few percent of measured values.

For a gas whose molecules are represented by rigid spheres of diameter dg, the mean free path may be
represented more conveniently as a function of temperature and pressure as

RT

A = ff  NPd ° ' (18b)

where R is the universal gas constant, T is the temperature, N is Avogadro's number, P is the pressure, and

dg is the effective collision diameter of the gas. This is the form used in this analysis.

Stewart and Leiser calculated the mean free path as

_. = 2.303 X 10-8 T/P, (18c)

which is equivalent to using a collision diameter of 3.64908 X 10-8 cm for air. Hughes 12 (and subsequently

Striepens 4) calculated the mean free path coefficient based on the Boltzmann mean free path of 02 and N2

of 8.6 X 10-6 cm at 0°C and 750 mm Hg. The equivalent expression is

Z.= 3.102631579 X 10-8 T/P, (18d)

which uses a collision diameter of 3.14388 X 10-8 cm for air. Klett 3 used a collision diameter of

3.64998 X 10-8 cm for air. Calculations based on sea level values of ICAO atmosphere 13 give a collision

diameter of 3.65009 X 10-8 cm and this is the value of dg used in this analysis.

Eq. 17 may be an adequate representation for bulk insulation materials (blanket insulation). Later Striepens

and Reeves 6 found it desirable to negate the effects of porosity on air conduction by using (1 - S) m, with



m=0.Thus,to be consistent with other formulations (e.g., Eq. 2) his formulation for air conductivity should

be divided by the porosity (1 - S).

In this investigation however, it was found desirable to modify Eq. 17 to account more for the open cell concept

required for the class of insulators under investigation. If one observes the nature of the fiber bundles and fiber

endings in figure 1, it becomes obvious that the cells are not closed and that the ends are frequently free. This

implies that the collision diameters and pressure effects would have a greater influence on the conductivity.

Thus, it was decided to incorporate an additional factor that would more closely approximate the effects of

the temperature and pressure effects on mean free path. The variation of mean free path for air as a function
of temperature and pressure can be seen in figure 4. The form of the additional factor proposed for the open
cell is

, (19)

for rigid insulation materials where v is defined as

v=2", with  u=-I-31Oglo( -o)
(20a)

In this formulation, fg is a gas conduction correction factor that is density dependent, and Po is the reference
pressure in the appropriate units for one atmosphere. Since the behavior is markedly different at lower

temperatures where radiation is not so dominant, an additional compensation, x, is made to account for

temperature dependent effects.

t 1 , for T>T'
= . (20b)

T'/T, for TaT'

A typical value for T'was found to be 500 K for this study. Thus, the gas conduction term used in this analysis
in the weak direction is

k-k os[]El,.v (21)

A comparison of the correction of the gas conductivity for LI-900 for the open and closed cell terms can be

seen in figure 5. This figure shows the expressions used to multiply the gas conductivity, kgas, in Eq. 17 and
Eq. 21. In this figure it is clear that the gas conduction effects are greater for an open cell as a function of

pressure than for the closed cell. In addition, Eq. 21 tends to give a slightly greater influence to gas conduction

than the other models; for example, the open cell correction term is approximately 1.5 at 1 atmosphere for

temperatures above 500 K.



As with the solid conductivity, it was found that a slightly different scaling factor is required for each direction.

An appropriate scaling factor for the strong direction, based on morphological properties, was found to be

/']st
_g,t =" _' (22)

r/w

which primarily increases the pore size from LM to £M,

£M "_ l"]g.t LM , (23)

and the gas conduction term in the strong direction becomes

k :kg [ ]Ea,vg., + (24)

Typically, £M ranges from 11/2 to 21/2 cm. In comparison to the contribution by Eq. 19, the influence of
Eq 23 produces only second or third order effects.

EMISSION AND ABSORPTION

The contribution due to emission and absorption used by Stewart and Leiser 5 is

k,_ = 4FcreT a , (25)

where the term F, derived by Dresher and Pike 2 is

(1-,=)
r--% [r ('-- y)] ' with y = _ / 3 (26)

This represents the bulk radiation term for the insulation in terms of the cell parameters defined earlier. Stewart

and Leiser 5 were then able to approximate, by analysis of experimental data, the bulk emissivity:

_-.a,n(b) (27)

where fl is an emissivity scaling factor (dependent on density and material composition). (Our preference is

to include fl in Eq. 25 instead of Eq. 27, which makes it an emission scaling parameter.) The two constants,

a and b, were defined as 0.473 and 3000, respectively.

For convenience, the terminology used by other investigators will be adopted and the effects of emission and

absorption will be described only as emission. Similarly, in this discussion emissivity will be used collectively
for emissivity/absorptivity.
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Theexpressionusedby Klett3 is

k/.ad =. _ 4 + , with Z=l-e -u(D_r-L") , (28)

where LM and Def t are defined in Eq. 11, Z is the fraction of radiation stopped at each wall, u is the wall

absorption coefficient, AT is the temperature gradient across the cell, and FA is the view factor between

radiating ends. A value of 0.53 was used for FA. As was mentioned earlier, it is difficult to obtain values of

U.

As a matter of contrast, the expression used by Striepens 4 is

4crT3 L
k' (29a)

rad -" 2
--I+N'L
E

whereL is the thickness of the material (test specimen),N'is obtained by scaling the effective backscatter cross

section per unit mass, N, by the bulk density (N ' =- Pl" N ), and e is the effective emittance of the bounding

surfaces. However, this was later simplified by Striepens and Reeves 6 as

8oT 3

k"_d (P' + 2N') (29b)

where P' is obtained by scaling the absorption cross section per unit mass, P, by the bulk density (P' = Pr p ).

The values for N and P are obtained from the experimental data. They recommended values of N for both LI-

900 and LI-2200 of 204.816 cm2/gm, while the recommended values of P are 0 cm2/gm and 81.926 cm2/gm

for LI-900 and LI-2200, respectively. It should be noted that assuming N and P are constant is equivalent to

assuming the emissivity is constant (independent of temperature).

The approach used for Eq. 25 and Eq. 26 appears to be more attractive than Klett's or Striepens' since data

are readily available from the previous calculations. However, it was found that Eq. 26 provides an adequate

representation for the emission scaling factor, F, for LI-900; the computed value of F decreases in magnitude

for the higher density LI-2200 when it should increase in magnitude.

In each of the representations for the radiative term presented above, the assumption is made that the emission

can be treated collectively for all of the fibers. No attempt was made to determine if the emission was selective

with respect to the individual class of fibers. In this paper, however, it is proposed that the radiative

contribution of each fiber type, as a distinct class, can be characterized. That is, the silica fibers have a

characteristic emission behavior that is distinct from any other group of fibers, such as alumina. With this

approach it is reasonable to assume that, like the solid conductivity, the contribution would be related to the
relative amounts of the different fibers in the insulation. Likewise, the preferential orientation and fiber count

for that orientation would influence the emission in that respective direction.
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Theapproachtaken is to utilize the index of refraction ni, i E {Si, AI, ABS}, and fiber diameter, di, in

computing the emission scaling factor, F. In this formulation the contribution due to emission/absorption may
be defined as

k; --- 4fl crT a _i6, F I e, , 1 _{St, A1, ABS}, (30)
1

where F i is defined as

Fz = d, 10 n' , l (K{SI, A1, ABS} (31)

The parameter ]/is reserved for scaling the emission term, if required, but not the apparent fiber emissivity.
The values selected for the index of refraction are 1.487, 1.768, and 1.642 for silica, alumina, and mullite

(Nextel), respectively. The term,/_,, is essentially a switching parameter that either takes on the value of the

weight fraction, F i, or is set to zero if no emission contribution is desired for a selected material. Since SiC
grit may be ignored with respect to the contribution to emission, it may be expressed as

I .o}
Fi Fs,c

/_, = F, Fsi c _ 0 ' I E{Si, AI, ABS}. (32)
1 - Fs, c

While ignoring the contribution of silicon carbide may sound strange, especially since it is added to enhance
the surface emittance, its addition provides no observable contribution to the effective conductivity 14 for the

lower density materials. It does, however, effect the effective surface emittance from approximately 0.2 to 0.8

if the coating is breached.

Thus, Eq. 30 and Eq. 31 can be used to calculate the internal conduction due to emission/absorption in the weak

and strong directions as

k' 4 fl crT 3r, ==

k'r. t =4fl crT 3 _Fl F, Est '
l

(33)

where the appropriate apparent emittance factor for each fiber is a function of temperature and direction for

that particular material.
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COMBINED MODEL

Thus substituting Eq. 15, Eq. 21, Eq. 24, and Eq. 33 into Eq. 2 gives the combined equation for both directions

as

= , S-lk,kw Sk o. + (1-S)kgw + rw '

kst = S ksost ..t- (1- S )k 'gst -I- S - l k 'rst •

(34)

DATA CORRELATION

To correlate the mathematical model with test data, a basic set of criteria is assumed to be known: the

conductivities and collision diameters of the molecules or atoms that constitute the gas or atmosphere, the

densities and conductivities of the various fibers, and miscellaneous ingredients that are used to form the

insulation. Touloukian, Liley, and Saxena 11 provide recommended conductivity values for several gases. A

third order least squares fit to this data provides a reasonable approximation to the gas conductivity or standard

models, such as those proposed by Hilsenrath, et al. 15 for selected gases, can be used. A comparison of

different equations used to approximate the conductivity of air can be seen in figure 3. The collision diameters

for air and CO2 are provided in table I.

With respect to the various fibers used in the insulation, Touloukian, Powell, Ho, and Klemens 7 provided

recommended values for silica (SIO2) and alumina (A1203), but no data are available for Nextel

(3 A1203oBO3o2 SIO2). However, Mullite conductivity values (3 A1203o2 SiO2) can be found in the

literature, which appears to closely resemble Nextel except for the lack of the boria molecule. Nextel has a

density of 2.7 gm/cm 3 as opposed to the reported density of 3.15 gm/cm 3 for Mullite, but conductivity values

were found for Mullite with a fiber density of 2.79 gm/cm 3. For this analysis, it was decided to use these values

of Mullite as a substitute for Nextel 312. All of the materials except LI-900 have a small amount of silicon

carbide (SIC) added to enhance the emissivity in case the coating is breached during the mission. Typically,

only two or three percent silicon carbide (320 or 600 grit) is added in the manufacturing process. For this

analysis, it was assumed that a grit particle could mathematically be represented by a cylindrical particle

whose length and diameter are of the same dimensions. The equations and coefficients used to approximate

these data are provided in table II, while the representative values can be seen in figure 2.

METHOD EMPLOYED

In this section, the method and philosophy used to determine the various parameters required to predict the

conductivity of a class of insulators is discussed. The basic assumption is that if the density (p), tensile strength

(o w and Ost), and fiber composition (length, diameter, type of fiber, and fiber mixture) are known, then only

the relative binding efficiencies (r/'w and r/'st), gas conduction factor (fg), and apparent fiber emissivity (e)
need to be determined in order to characterize the material conductivity. The empirical conductivity data are

available as results obtained through standard ATSM test procedures. The data used in this paper are for the

silica-based materials designated as LI-900 (all silica), LI-2200 (silica and SIC), FRCI-12 (silica, Nextel, and

SIC), HTP-12, HTP-9, and HTP-6 (silica, alumina, and SIC).
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It shouldbeobservedthatr/'wandrl'stareessentiallyscalingparametersforinfluencingthesolidconductivity
contributionin theweakandstrongdirections.It wouldbehighlydesirableto determinethesevalueswith
minimalinfluenceduetogasconductionandemission.Thegasconductioneffectscanbeminimizedbyusing
dataat 10-4atmospheresorbelow,whileemissioneffectscanbeminimizedbyusingdatabelow300K.

Twoorthreetemperature values are selected and an optimization program is used to calculate an r/'w or r/'st

that allows the conductivity to approximate the data in either the weak or strong direction.

Once the appropriate values for r/'w and r/'st have been selected then the process can be repeated, only in this

case for the ei and fg in the weak direction, and the ei in the strong direction. Typically, the variables must
be bound such that

0.025 ,: r/'w ": 1, 0.025 -: r/'st ": 1, 0-: ei -: 1, and 0.5 ,: fg -: 2.5.

At this stage, it should be intuitively obvious that the ei are selected to correspond with the conductivity values

at a given temperature. The basic assumption is that the apparent fiber emissivity is a function of temperature

only, thus all of the temperature and pressure data can be used to obtain this fit. The gas conduction factor,

fg, is used to make minor adjustments due to material binding characteristics with respect to gas pressure. In

general, fg is very close to one for the low density materials. It is assumed that fg is unchanged when using
different gases in the model.

A sketch of the calculation procedure for conductivity prediction can be found in Appendix A. In this sketch,
the equation numbers that apply to a particular process are identified.

BASELINE REFERENCE DATA

Excellent data are available for LI-900,16 an all silica material, from 116.67 K through 1922.22 K in the weak

direction and from 116.67 K through 1533.33 K in the strong direction. Average values for the length and

diameter of the silica fibers used in the manufacture of LI-900 are 1.27 cm and 1.4 Ltm, respectively. It has

a density of 0.144 gm/cm" and measured tensile strength values ofow = 1.655 X 103N/m 2 and Crst= 4.619
X 10 N/m 2. The average angle between fibers is estimated to be 100". The values for r/'w, r/'st, and fg were
calculated to be 0.45513, 0.38492, and 1.04799, respectively. After the Ei values were calculated for both

directions, it was determined that a quadratic approximation could be made to represent the apparent fiber

emissivity values over the entire temperature range. The relative agreement to the baseline data using this

approximation can be seen in figures 6 and 7 for the weak and strong directions. The predicted values in the

strong direction have been extended to 1922.22 K to be consistent with the data presented in the weak

direction. The ratio r/gst was calculated as 2.39088 for this data. The percentages of error in the predicted

values are shown in figures 8 and 9, where it can be seen that most of the errors are within ±10 percent. For

reference purposes, the apparent fiber emissivity values used for all materials are shown in figures 10a- 10c.

In these figures the silica emissivity values obtained from the LI-900 analysis are shown. It is interesting to

observe that for silica the emissivity values in the strong direction were almost double those in the weak

direction at the higher temperatures. Apparent reflection in emissivity is observed at approximately 0.42 for

the weak and strong directions. The predicted apparent fiber emissivity values ranged from approximately
0.33 at 116.67 K to 0.63 at 1922.22 K in the strong direction, and from approximately 0.49 at 116.67 K to 0.29
at 1922.22 K in the weak direction.

FRCI-12 16,17 is a silica-based material consisting of a weight ratio of 78 percent silica and 22 percent

alumina-boria-silica (Nextel) with a density of 0.192 gm/cm 3. This material has three percent 320 grit silicon

carbide added. The silica fibers are 1.27 cm long with an average diameter of 1.4 microns. Nextel fibers have
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adiameterof 11micronsandarealso1.?57cmlong.Measuredtensilestrengthvaluesof FRCI-12areCrw=
5.585X 105N/m2andOst= 1.772X 10 N/m2.Theaverageanglebetweenfibersisestimatedtobe100".
Thevaluesforr/'w, r/'st,andfgwerecalculatedtobe0.30993,0.17315,and1.06574,respectively.Afterthe
ei values were calculated for both directions, it was determined that the apparent fiber emissivity could be

represented in quadratic form similar to silica. The relative agreement to the baseline data using this

approximation can be seen in figures 11 and 12 for the weak and strong directions. As with the LI-900

comparison, the predicted data have been extended to 1922.22 K. Similarly, data are predicted at all five

decades of pressure (1, 10-1, 10"2, 10"3, and 10-4 atmospheres) in the strong direction. The ratio r/gst was

calculated as 1.83315 for this data. The percentages of error in the predicted values are shown in figures 13

and 14, where it can be seen that most of the errors are within ±10 percent, except for the low temperatures,

where errors of approximately 40 percent are observed. Due to the rather excellent agreement in the strong

direction, the assumed mullite and silicon carbide data may be suspect at temperatures below 400 K (see figure

2). The greatest variation for the weak direction was for the data at 10-4 atmosphere pressure, with rather

excellent agreement at all other pressures. The predicted apparent fiber emissivity values for Nextel emission

contribution are shown in figure 10a along with the silica emissivity values as a function of the temperature.
In the weak direction, these values range from 0.35 at 116.67 K to 0.0039 at 1922.22 K. In the strong direction,

the apparent fiber emissivity ranges from 0.78 at 116.67 K to 0.078 at 1922.22 K. It should be pointed out that

this is extrapolating data above 1200 K to the higher temperatures in both cases.

The HTP ceramics are silica-based materials consisting of 78 percent silica and 22 percent alumina with 3

percent 600 grit SiC added. The silica fiber are 1.27 cm long with an average diameter of 1.4 microns, and
the alumina fibers have a diameter of 3 microns and are also 1.27 cm long. The densities used in this

investigation were 0.096 gm/cm 3, 0.144 gm/cm 3, and 0.192 gm/cm 3. The materials are appropriately

designated as HTP-6, HTP-9, and HTP- 12 corresponding to density in lb/ft 3. Measured tensile strength value s
are 3.172 X 105 N/m 2 in the weak direction and 9.101 X 105 N/m 2 in the strong direction for HTP-6; 4.619

X 105 N/m 2 in the weak direction and 1.558 X 106 N/m 2 in the strong direction for HTP-9; and 6.067 X 105

N/m 2 in the weak direction and 2.206 X 106 N/m 2 in the strong direction for HTP-12. The average angle

between fibers is estimated to be 100 °, the same as used for the other materials.

Limited experimental data exists for the I-JTP materials. HTP-6 data 18 are available only in the weak direction

for two pressures, 1 atmo_here and 10"_ atmosphere. HTP-9 data 18 are available for both strong and weak

directions, but onl_ at 10--' atmosphere and the data span a limited temperature range (94.44 K to 922.22 K).
The HTP-12 data 9 are reported for all five pressure levels in the weak direction, but not for temperatures

below 297.22 K. The compromise reached was to use the ratio between r/'w and r/'st calculated from HTP-

9 to calculate r/'st for HTP-6 and HTP-12. Likewise, HTP-6 data were used to calculate the gas correction

factor, fg, for HTP-6, but fg values for LI-900 and FRCI-12 were used for HTP-9 and HTP-12, respectively.
The computed values for r/'w and r/'st were 0.12574 and 0.08136, respectively for HTP-6; 0.10802 and

0.06989 for HTP-9; and 0.26164 and 0.16928 for HTP-12. The computed gas correction factor, fg, was

computed to be 0.95861 for HTP-6 while the values computed for LI-900 and FRCI-12 were used for HTP-

9 and HTP-12, respectively.

The comparison of the predicted and baseline values for HTP-6 in the weak direction can be seen in figure

15. Predicted values in the strong direction are shown in figure 16. In both plots, predicted data are extended

to 1922.22 K at all five pressure levels. Only predicted data in the strong direction are shown in figure 16 since

no comparison can be made with measured data. The ratio r/gst was calculated as 1.88926 for this data. The

percentages of error in the predicted values in the weak direction are shown in figures 17a and 17b, with most

of the errors between - 13% to 24% if the low temperature (94.44 K) values are ignored. The alumina apparent

fiber emissivity values can be seen in figure 10b.
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Thecomparisonof thepredictedandbaselinevaluesfor HTP-9canbeseenin figures18and19.Theratio
r/gst was calculated as 2.27744 for this data. In these plots the predicted data are extended to 1922.22 K at all
five pressure levels. The percent error in the predicted values are shown in figures 20a and 20b with most of

the errors within ±5 percent. Identical to HTP-6, the alumina apparent fiber emissivity values can be seen in

figure 10b.

The comparison of the predicted and baseline values for HTP- 12 can be seen in figure 21. In this plot, predicted

data are extended to range from 116.67 K to 1922.22 K at all five pressure levels. Predicted values in the strong

direction are shown in figure 22. The ratio rigst was calculated as 2.48035 for this data. The percent error in
the predicted values are shown in figure 23, with most of the errors within ± 10 percent. The alumina predicted

apparent fiber emissivity values for HTP-12 are presented in figure 10b.

Predicted conductivity values for all three HTP materials were higher than the measured data in both directions

at low temperatures. This can be directly attributed to the rapid increase in conductivity with decreasing
temperature of the alumina fibers (see figure 2). At this time it is not know if the fibers used in the construction

of the HTP materials differ significantly from those reported by Touloukian, et al.7 Nonetheless, if an attempt

were made to be closer at the cryogenic temperatures, the values of r/'w and r/'st would decrease significantly.

Predicting the material conductivity for LI-2200 was difficult since the standard reference data 20 were

unreliable. Test data from the Ivy and Striepens report 8 were used in this LI-2200 analysis. In this model, it

was necessary for both fl and fg to depart from approximately one. In addition, while the apparent fiber
emissivity values computed for LI-900 in the weak direction could be used with a fair degree of accuracy, it

was necessary to compute different apparent fiber emissivity values in the strong direction. Similar to LI-900,

LI-2200 consists of 98 percent silica with 2 percent 320 grit SiC particles included to enhance emissivity in

case the coating is breached during entry. The average length and diameter of the silica fibers are the same

as those used in all of the other materials. This material has a density of 0.35241 gm/cm 3 and measured tensile

strength values ofow = 5.033 X 105 N/m 2 and Ost = 1.241 X 106 N/m 2 . As with the other materials the average

angle between fibers is estimated to be 100 °. The values calculated for r/'w, r/'st, and fg were 0.46581,0.26359,
and 1.59464, respectively. The ratio rlgst was calculated as 1.37992 for this data. The estimated value of fl

was 2.48429. The relative agreement to the baseline data using this approximation can be seen in figures 24
and 25 for the weak and strong directions. The predicted values in the strong direction have been extended

to 1922.22 K to be consistent with the LI-900 data. The percentages of error in the predicted values are shown

in figures 26 and 27, where it can be seen that most of the errors are within ±10 percent. As would be expected,

the relative errors in the strong direction are slightly better than those in the weak direction since the apparent

fiber emissivity was fit to this data instead of using data for LI-900. The apparent fiber emissivity values for
the silica fibers used for this analysis can be seen in figure 10c. It is interesting to note that the shape of the

emissivity curves in the strong direction are diametrically opposed. The shape of the LI-2200 curve is similar
to all other materials, except for LI-900, in the strong direction.

As with the other materials at cryogenic temperatures, the agreement with measured data appears to be poor.

However, the excellent agreement at higher temperatures in the weak direction (see figures 26 and 27) does

tend to support the independent contribution of the fibers. Additionally, in the weak direction, this tends to

support the view that apparent fiber emissivity is invariant with respect to density for a particular fiber. Further

substantiation of this concept is the relative close agreement between the three HTP materials, with respect

to variations in density and invariance with respect to apparent fiber emissivity.

Only one data point exists to illustrate that the emission scaling factor, fl, is a function of density (see figure

28). Substantial data exists to confirm the dependence of the gas conduction correction factor on density (see

figure 29).

16



A tabulationof theexperimentalandpredictedconductivityvaluesfor thesematerialsis providedin
AppendixB.

ADDITIONAL OBSERVATIONS

After this investigationwascompleted,it wasbroughtto our attention that a branch report* containing

additional HTP-6 test data was available for comparison. 21 As with the baseline data, the calculated

conductivity values were available only in the weak direction. The radiant test data are available for

temperatures from 294 K to 1644 K at pressures of 10 -1, 10 -2, and 10 -3 atmospheres. A comparison of this

calculated conductivity data with the baseline data can be seen in figure 30. For temperatures up to 1000 K,
the calculated values are in fairly close agreement with baseline data when comparing 10-3 and 10 -4

atmosphere pressure data. Above 1000 K, the data appeared to rapidly depart from the baseline data. A

comparison of the predicted values and the values calculated from the branch report in the weak direction can

be seen in figure 31. In this figure, the data appear to be relatively close except for midrange temperatures for

the 10-1 atmosphere data. This is better illustrated in figure 32 which shows a comparison of the percent error

in predicting this data. For the two lowest pressure levels, the predictions are within 20 percent of the

calculated values.

The relative contribution of the three components of conductivity provides an insight into the dependency of

the composite conductivity as a function of temperature and pressure. This is illustrated in figure 33 which

shows the percent contribution of the solid, gas, radiative components as a function of temperature for LI-900

in the weak direction at 10-2 atmospheres. In this figure, it can be seen that at low temperatures the solid and

gas components are the more dominant contributing factors. However, above 800 K emission dominates the

other two components. In direct contrast, the actual conductivity values for the same conditions, which
indicate the low, almost constant values attributed to solid and gas conductivity, may be seen in figure 34.

Similar results can be seen in the strong direction in figures 35 and 36. In these figures, however, the

contributions due to solid and gas components are nearly equal throughout the temperature range.

Another interesting result of using this analysis is the prediction of the relative improvement in FRCI-12

conductivity achieved by reducing the Nextel fiber diameter from 11 mm to 3 mm. Figures 37 and 38 illustrate

this improvement in the weak and strong direction. In these figures, the reference baseline values are also

shown in order to make a direct comparison. Of more interest is the percent variation between the predicted

values using the 3 ktm fiber diameter to the predicted values using the 11 _tm fiber diameter. Of particular

interest is the influence of pressure, as well as temperature on the variation in conductivity due to this fiber

diameter change (reduction). This reduces the emission scaling factor, FABS, by a factor of 27 percent (see
Eq. 31), which reduces the contribution due to emission/absorption, but also produces a minor change in the

effective cell dimensions. In the weak direction, the peak reduction (approximately 35 percent) occurs around

900 K at the lowest pressure where gas conduction is negligible (10 -4 atmospheres) (see figure 39). Very little

change occurs at the lowest and highest temperature extremes where solid conduction and emission effects
are dominant in both models. At one atmosphere approximately 18 percent reduction can be obtained at

1100 K. These variations are dominated by the apparent fiber emissivity change due to fiber diameter (see Eq.

31 and Eq. 33). This is better illustrated in figure 40 where the individual com p 2nents of conductivity (solid,
gas, and emission) are compared for the two fiber diameters at a pressure of 10- atmospheres. In this figure,

the solid and gas conductivity are essentially the same, and the only change is between the radiative

components. This could also be implied from figure 39 since gas conduction is negligible at 10-4 atmospheres.

In contrast, for the strong direction almost no change occurs above 1500 K, although it is similar at lower

temperatures (see figure 41). As would be expected, less improvement can be obtained in the strong direction

*Copies of this report are available through the Lyndon B. Johnson Space Center, Structures and Mechanics Division, Thermal Branch.
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thanin theweakdirection.Thisisprimarilyduetotheslightlygreaterinfluenceof thesolidand,toa lesser
extent,togasconductivitycomponents(seeEq.13andEq.22).Ingeneral,thereisa5percentgreaterreduction
intheweakdirectionthaninthestrongdirection.It isalsointerestingtonotethatthemaximumchangeinthe
strongdirectionoccursapproximately300K lowerthanfortheweakdirection.

PREDICTIONS IN A CO2 ATMOSPHERE

Due to the demands placed on modern hypersonic spacecraft there is a need to be able to predict the thermal

conductivity of a material from basic morphological data prior to development and testing of the material

candidates. It is also desirable to be able to determine the suitability of existing materials for uses other than

those for which they were originally designed, and to predict their properties in environments in which they

have not been tested. As opposed to the effects of changing the fiber diameter described in the previous section,

this analysis would be directed towards the effects due to changes in gas conductivity and its associated
collision diameter.

This analysis has been extended for prediction in a CO2 atmosphere similar to that for Mars. The technique

selected is similar to that previously employed, namely comparing to baseline values in air, followed by

percent variation plots from the predictions in air. It is felt that this would provide an insight into errors that

could be encountered for porous materials whose properties are not known in an exotic atmosphere.

A comparison of different approximation techniques for CO2 can be seen in figure 42, and the coefficients

are listed in table I. In this analysis, it should be noted that conductivity values for this gas are not tabulated

below 200 K (it becomes a solid). However, for continuity between the analysis for air and carbon dioxide,

values were estimated such that the conductivity would be zero at absolute zero. The comparison between air

and CO2 conductivity can be seen in figure 43. In this plot, it can be seen that the conductivity for air is greater

than CO2 for temperatures below 1000 K, and the role reverses above 1000 K. Thus, just due to gas

conductivity alone, the conductivity of a porous material would be expected to be less than those predicted

in air at temperatures below 1000 K where emission effects are minimal. The collision diameter used for CO2,

dg = 4.59241 X 10-8 cm, is based on the value for the mean free path of 4.19 X 10-6 cm reported by

Kennard. 22 The surface pressure on Mars is apflroximately 10-2 atmospheres, so more interest is directed at
predicted data above 200 K in the 10-2 to 10-°"atmosphere pressure range.

Predicted values of LI-900 conductivity in the weak and strong direction compared to baseline values in air

can be seen in figures 44 and 45, respectively. From these plots, the predicted data above 500 K appear to be

in reasonable agreement with baseline values. For values below 500 K, it appears that using air-derived

conductivity values would produce large errors except at the lowest pressure. Percent variation plots of the

predicted values in CO2 with the values predicted in air can be seen in figures 46 and 47. These indicate that

at 10 -4 atmospheres the data are in excellent agreement over the entire temperature range. At 10-3 and

10-2 atmospheres, the conductivity values predicted in CO2 are lower than those predicted in air for

temperatures less than 500 K. While the percent variation values are greater for temperatures above 500 K for

these pressure levels, the variation is within 5 percent. For pressures of 10-1 and 1 atmospheres, the negative

variation occurs below 1000 K and, similar to data at other pressures, tends to be in close agreement at

temperatures above 1000 K where emission is dominant.

Due to the similarity in trends for the other materials to that observed for LI-900, the individual characteristics

of each material will not be discussed. Predicted values of FRCI-12 conductivity in the weak and strong

direction compared to baseline values in air can be seen in figures 48 and 49, respectively. The corresponding

percent variation plots of the predicted values in CO2 with the values predicted in air can be seen in figures

50 and 51. Predicted values of HTP-6 conductivity in the weak direction compared to baseline values in air
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canbeseenin figure52.Predictedvaluesin thestrongdirection(nobaselinevaluesareavailablefor air)can
beseenin figure53.ThecorrespondingpercentvariationplotsofthepredictedvaluesinCO2withthevalues
predictedinaircanbeseeninfigures54and55.PredictedvaluesofHTP-9conductivityintheweakandstrong
directioncomparedtobaselinevaluesinaircanbeseenin figures56and57,respectively.Thecorresponding
percentvariationplotsof thepredictedvaluesinCO2withthevaluespredictedin aircanbeseenin figures
58and59.PredictedvaluesofHTP-12conductivityin theweakdirectioncomparedtobaselinevaluesinair
canbeseenin figure60.Predictedvaluesinthestrongdirection(nobaselinevaluesareavailableforair)can
beseeninfigure61.ThecorrespondingpercentvariationplotsofthepredictedvaluesinCO2withthevalues
predictedin aircanbeseenin figures62and63.PredictedvaluesofLI-2200conductivityin theweakand
strongdirectioncomparedto baselinevaluesin air canbeseenin figures64and65,respectively.The
correspondingpercentvariationplotsof thepredictedvaluesinCO2withthevaluespredictedin aircanbe
seenin figures66and67.A tabulationof thesepredictedvaluesareprovidedin AppendixC.

CONCLUDING REMARKS

A mathematical model has been developed to predict the thermal conductivity of low density, silica-

based, fibrous composite insulation materials. This model, while based on a mathematical formulation,

is correlated with experimental data.

• The contribution due to silica is consistent for all temperatures in the weak direction.

• The contribution due to individual fibers in the composite insulation appear to be independent of one

another.

Once the parameters have been defined for one atmosphere they can be used to predict conductivities for

other atmospheres. Conductivity values were predicted for a carbon dioxide atmosphere for all of the

materials analyzed.

• A technique has been developed for assessing properties at other densities and compositions.

• The effects of density variation influence on gas conduction and emission have been identified.

• Conductivity predictions are better at high temperatures than at cryogenic temperatures.

Effects due to fiber diameter have been analyzed. An analysis of reducing the fiber diameter of Nextel

from 11 p,m to 3 I,tm indicate that the conductivity could be reduced by up to 30 percent at 700 K for FRCI-

12.
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Table la - Collision Diameters for Air and Carbon Dioxide

Gas

Air

C02

T (K) P (atm) _. (cm) dg (cm) Reference

288.16 1.0 6.6317223 X 10 -6 3.65035 X 10 -8 13

288.16 1.0 4.19 X 10 -6 4.59241 X 10 -8 22

Table Ib - Equations Used to Approximate Air and CO2 Conductivity

n

-- X' Tikair ,at ,
l-O

n = 1 for T < 100K, n = 3 for 100K _ T _ 2000K

n

kco 2 =_atT t n 2forT<200K9 _-- 9

l-0
n = 2 for 200K _ T _ 2000K

a0

al

a2

a3

Table Ic. Coefficients Used to Approximate Air and CO2 Conductivity

Air < 100 K Air > 100 K

8.577777 X 10 .8

2.190195 X 10 .7
1.26129 X 10 .6

2.228759 X 10 -7

-7.988213 X 10 -11

1.5816405 X 10 -14

ao

al

a2

CO2 < 200 K

-8.777165 X 10 -lo

7.601161 X 10 -8

1.891736 X 10 -lo

CO2 > 200 K

-2.7224489 X 10 "5

2.3923836 X 10 .7

-5.0480815 X 10 -11

...... ,-i.Mt.,,
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Table Ila - Equations Used to Approximate Solid Conductivity for
Silica, Alumina, Mullite (Nextel), and Silicon Carbide

Silica

8

k ffi _a I T l
1-0

,50 K <T < 2000 K

Alumina k = I0 z ,z -- -l+cos a_T t
B

2

k = _a t T t
IB0

, 100.277195 K _ T _ 2000 K

,50K < T < 100.277195 K

Mullite
3

k = _a t T t
l-0

,50 K< Tx 2000 K

Silicon Carbide
1

k = _a I T _
t-0

,50 K< T < 2000 K
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Table IIb - Coefficients Used to Approximate Solid Conductivity for

Silica, Alumina, Mullite (Nextel), and Silicon Carbide

SiO2

ao 1.11335958 X 10 -4

al 1.55188268 X 10-5

a2 3.82441377 X 10 -9

a3 -1.35737925 X 10 -10

a4 3.21058986 X 10 -13

a5 -3.43568691 X 10 -16

a6 1.92130034 X10-19

a7 -5.46480792 X10-23

a8 6.25315816 X 10 -27

a9

A1203

50 K < T < Tcrit Tcrit < T < 2000 K

-7.88248123 X 10 -2

7.73371359 X 10 -3

-3.799585256 X 10 -5

3.7054204 X 10 -2

1.5349288469 X 10 -2

-6.7582406126 X 10 -5

1.77289023438 X 10 -7

-2.8013704328 X 10 -lo

2.77132827779 X 10 -13

-I.73085249 X 10 -16

6.6277947001 X 10 -20

- 1.4203766279 X 10 -23

1.304374531 X" 10 -27

3 A1203.2 SiO2 SiC

ao 1.79893598 X 10-2

al -1.7863805 X 10-5

a2 1.1463903 X 10 -8

a3 -2.565216 X 10 -12

2.7769927 X 10 -2

-2.89519 X 10 -6

Alumina -- Tcrit = 100.277195 K
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Appendix A

Sketch
of

Calculation Procedure
for

Conductivity Prediction





Read Input Data [

Calculate Solid Volume & Fraction of Fibers

Eq. 6, Eq. 7, Eq. 8

Calculate Number of Fibers, Effective Length & Diameter

Eq. 3, Eq. 4, Eq.5, & Eq. 9

Calculate Fiber Orientation Parameters

Eq. 11 & Eq. 13

Calculate Radiation Scale Factor & Weight Fraction

Eq. 31 & Eq. 32

( Start of Pressure Loop

( Start of Temperature Loop
h.._l

rl!

Calculate Solid Conductivity

Eq. 14

Calculate Gas Conductivity

Eq. 18b, Eq. 19 -- Eq. 24

Calculate Radiation/Absorption Conductivity

Eq. 33

Combine Components

Eq. 34

No

End of Temperature Loop ? )
,jr

Yes

( End of Pressure Loop ? ) Yes

Sketch of Calculation Procedure for Conductivity Prediction

A-1





Appendix B

Morphological, Emissivity, and Conductivity Data

For

LI-900,
FRCI-12,

HTP-6, HTP-9, HTP-12,
and

LI-2200
in Air





Table BI - Morphological and Emissivity Data for LI-900

Total Density

Angle Between Fibers

O. 1442 gm/cm 3
100.0 °

Content (%)
Diameter (microns)

Length (cm)
Density (gm/cm 3)
Index of Refraction

Silica

100.00
1.40
1.27
2.20
1.487

Fiber Data

Alumina

0.00
3.00
1.27

3.97
1.768

Nextel

0.00
11.00

1.27

2.79
1.642

SiC

0.00
75.00

0.0075

3.10

Tensile Strength (N/m 2)
Gas Conduction Factor

Solid Binding Efficiency Factors

Weak Direction

Ow = 1.655X 105

fg = 1.04799

rlw'= 0.45513

rlw = 0.11893

Strong Direction

Ost = 4.619 X 105

fist' = 0.38492

_qst = 0.28434

Temperature
oF

-250.00
0.00

250.00
500.00
750.00

1000.00
1250.00
1500.00
1750.00
2000.00
2250.00
2500.00
2750.00
3000.00

oC

-156.33
-17.44
121.44
260.33
399.22
538.11
677.00
815.89
954.78

1093.67
1232.56
1371.44
1510.33
1649.22

EW

0.48726
0.44736
0.41163
0.38007
0.35268
0.32946
0.31041
0.29553
0.28481
0.27827
0.27629
0.27769
0.28266
0.29378

Emissivity
Est

0.33424
0.37798
0.41818
0.45484
0.48796
0.51754
0.54357
0.56607
0.58502
0.60043
0.61032
0.62063
0.62462
0.62666

B-1



Table B1 - Base Line Conductivity Data for LI-900

LI-900 Experimental Base Line Conductivity Values - Weak Direction

Conductivity - cal/cm-sec-°C X 10 .4

Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 0.96315 0.89288 0.62005 0.31003 0.20668
-17.44 1.13676 1.03342 0.75646 0.41337 0.31003
121.44 1.40959 1.30624 0.93008 0.51671 0.38030-
260.33 1.78988 1.65347 1.14090 0.69033 0.51671
399.22 2.20739 2.03377 1.34345 0.89288 0.72339
538.11 2.71996 2.48021 1.62040 1.13676 0.96315
677.00 3.23254 2.99692 2.03377 1.44679 1.27317
815.89 3.89393 3.61697 2.55048 1.89736 1.71961
954.78 4.67106 4.38170 3.17053 2.52155 2.34380

1093.67 5.62181 5.24978 3.89393 3.23254 3.03412
1260.33 6.90325 6.40721 4.79507 4.21636 3.99314
1371.44 8.01934 7.39929 5.74582 5.08443 4.79507
1538.11 10.00351 9.17678 7.44063 6.69657 6.36587
1649.22 11.98768 10.83025 9.05277 8.10202 7.85400

LI-900 Experimental Base Line Conductivity Values - Strong Direction

Conductivity - cal/cm-sec-°C X 10 -4
Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 1.24010 1.07476 0.90941 0.53738 0.45471
-17.44 1.61214 1.36412 1.15743 0.74406 0.62005
121.44 1.94283 1.69481 1.36412 0.95075 0.82674
260.33 2.35620 2.10818 1.73615 1.24010 1.07476
399.22 2.89358 2.64556 2.10818 1.65347 1.44679
538.11 3.63764 3.34828 2.60422 2.14952 2.02550
677.00 4.58839 4.29903 3.43096 2.93491 2.72823
815.89 5.78716 5.45646 4.50571 3.96834 3.67898
954.78 7.23394 6.90325 5.78716 5.16710 4.91908

1093.67 9.13544 8.76341 7.44063 6.69657 6.32453
1260.33 11.90501 11.28495 9.92084 9.13544 8.80474
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Table B1 - Analytical Conductivity Data for LI-900

LI-900 Analytically Predicted Conductivity Values - Weak Direction

Conductivity - cal/cm-sec-°C X 10 -4
Pressure - Atmospheres

T(°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 0.91928 0.79541 0.59884 0.27820 0.15955
-17.44 1.27043 1.12163 0.77718 0.37390 0.27981
121.44 1.57019 1.38793 0.90154 0.46501 0.38259
260.33 1.90632 1.67493 1.04563 0.58789 0.51182
399.22 2.37396 2.06103 1.26309 0.77732 0.70368

538.11 2.89302 2.49479 1.54613 1.04571 0.97467
677.00 3.47029 2.98452 1.90285 1.39622 1.32777
815.89 4.11069 3.53612 2.33760 1.83011 1.76412

954.78 4.82879 4.16471 2.86334 2.35827 2.29459
1093.67 5.65571 4.90158 3.50901 3.00820 2.94664
1232.56 6.63995 5.79507 4.32050 3.82480 3.76514
1371.44 7.84337 6.90659 5.35689 4.86637 4.80839
1510.33 9.33644 8.30590 6.68565 6.19987 6.14333
1649.22 11.19937 10.07229 8.38396 7.90203 7.84668

Analytically Predicted Conductivity Values - Strong Direction

Conductivity - cal/cm-sec-°C X 10-4
Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 1.11599 1.00145 0.86133 0.57497 0.37509

-17.44 1.60663 1.48424 1.25559 0.81221 0.62740
121.44 1.97227 1.83776 1.50730 0.96281 0.79097
260.33 2.37195 2.21383 1.76595 1.14251 0.97878
399.22 2.97350 2.76619 2.16724 1.46041 1.29873
538.11 3.74719 3.48890 2.74250 1.97590 1.81780
677.00 4.73001 4.41944 3.53203 2.72316 2.56930
815.89 5.94535 5.58150 4.56071 3.72236 3.57295

954.78 7.42297 7.00494 5.85846 4.99986 4.85484
1093.67 9.20771 8.73456 7.46944 6.59704 6.45618

1232.56 11.35374 10.82432 9.44649 8.56456 8.42752
1371.44 13.90729 13.32008 11.83403 10.94511 10.81149
1510.33 16.88747 16.24048 14.64904 13.75430 13.62363
1649.22 20.28137 19.57201 17.87623 16.97569 16.84747
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Table B2 - Morphological and Emissivity Data for FRCI-12

Total Density

Angle Between Fibers q

Content (%)
Diameter (microns)
Length (cm)

Density (gm/cm 3)
Index of Refraction

0.1922 gm/cm 3
100.0 o

Silica

75.66
1.40
1.27

2.20
1.487

Fiber Data

Alumina Nextel

0.00
3.00
1.27

3.97
1.768

21.34
11.00

1.27

2.79
1.642

SiC

3.00
75.00

0.0075
3.10

Tensile Strength (N/m 2)
Gas Conduction Factor

Solid Binding Efficiency Factors

Weak Direction

Ow = 5.585 X 105

fg = 1.06574

rlw'= 0.30993
rlw = 0.07239

Strong Direction

Ost = 1.772 X 106

_st' = 0.17315

_st = 0.13271

Temperature
oF

-250.00
0.00

250.00
500.00
750.00

1000.00
1250.00
1500.00
1750.00
2000.00
2250.00
2500.00
2750.00
3000.00

oC

-156.33
-17.44
121.44
260.33
399.22
538.11
677.00
815.89
954.78

1093.67
1232.56
1371.44
1510.33
1649.22

Ew

0.48726
0.44736
0.41163
0.38007
0.35268
0.32946
0.31041
0.29553
0.28481

0.27827
0.27629
0.27769
0.28266
0.29378

Silica

est
0.33424
0.37798
0.41818
0.45484
0.48796
0.51754
0.54357
0.56607
0.58502
0.60043
0.61032
0.62063
0.62462
0.62666

Emissivity
Mullim

Ew Est

0.35025 0.77844
0.31131 0.63547
0.27441 0.50734
0.23957 0.39405
0.20677 0.29561
0.17603 0.21201
0.14734 0.14326
0.12069 0.08935
0.09610 0.05029
0.07356 0.02607
0.05307 0.01669
0.03463 0.02216
0.01824 0.04248
0.00390 0.07763

B-4



Table B2 - Base Line Conductivity Data for FRCI-12

FRCI-12 Experimental Base Line Conductivity Values - Weak Direction

Conductivity - cal/cm-sec-°C X 10.4
Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-111.89 0.86105 0.82674 0.72339 0.44768 0.34434
24.22 1.34345 1.27441 0.96439 0.58574 0.44768

260.33 2.10115 1.89447 1.34345 0.82674 0.68908
482.56 2.96261 2.68689 1.79112 1.20580 0.99911
704.78 4.06465 3.54794 2.44590 1.72251 1.58444
927.00 5.44282 4.68470 3.30695 2.68689 2.58355

FRCI-12 Experimental Base Line Conductivity Values - Strong Direction

Conductivity - cal/cm-sec-°C X 10.4
Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-111.89 1.41248 0.00(K_ 1.06773 0.00000 0.62005
24.22 1.75682 0.00000 1.37776 0.00000 0.79243

260.33 2.68689 0.00000 1.96350 0.00000 1.13676
482.56 3.65128 0.00000 2.58355 0.00000 1.58444
704.78 4.71943 0.00000 3.23791 0.00000 2.48021
927.00 6.44152 0.00000 4.34037 0.00000 3.61697
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Table B2 - Analytical Conductivity Data for FRCI-12

FRCI-12 Analytically Predicted Conductivity Values - Weak Direction

Conductivity - cal/cm-sec-°C X 10.4

Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 1.07017 0.94651 0.75054 0.43252 0.31550
-17.44 1.37985 1.23146 0.88940 0.49141 0.39899
121.44 1.69932 1.51784 1.03611 0.60643 0.52562
260.33 2.10400 1.87387 1.25158 0.80166 0.72713
399.22 2.66813 2.35704 1.56842 1.09116 1.01903
538.11 3.28877 2.89303 1.95588 1.46438 1.39480
677.00 3.94750 3.46491 2.39677 1.89931 1.83226
815.89 4.61949 4.04883 2.86569 2.36748 2.30286
954.78 5.28287 4.62348 3.33917 2.84342 2.78106

1093.67 5.92529 5.17665 3.80268 3.31119 3.25090
1232.56 6.54671 5.70815 4.25362 3.76719 3.70877
1371.44 7.15925 6.22964 4.70131 4.22003 4.16325
1510.33 7.78657 6.76409 5.16650 4.68990 4.63453
1649.22 8.46687 7.34880 5.68436 5.21158 5.15738

FRCI-12 Analytically Predicted Conductivity Values - Strong Direction

Conductivity - cal/cm-sec-°C X 10 -4

Pressure - Atmospheres

T (°C) 1.0000 O. 1000 0.0100 0.0010 0.0001

-156.33 1.32073 1.20433 1.05063 0.74926 0.57714
-17.44 1.69723 1.56920 1.31016 0.87259 0.72245
121.44 2.09109 1.94615 1.57201 1.05614 0.91986
260.33 2.58264 2.40827 1.90662 1.33278 1.20460
399.22 3.24048 3.00939 2.34805 1.71137 1.58578
538.11 3.94909 3.65886 2.84549 2.16671 2.04455
677.00 4.68543 4.33435 3.37886 2.67260 2.55418
815.89 5.44401 5.03084 3.94369 3.22020 3.10554
954.78 6.26263 5.78634 4.57747 3.84383 3.73280

1093.67 7.24277 6.70232 5.38055 4.64149 4.53384
1232.56 8.22013 7.61433 6.18694 5.44537 5.34081
1371.44 9.87180 9.19908 7.67160 6.92905 6.82723
1510.33 11.78677 11.04501 9.42110 8.67804 8.57858
1649.22 13.96012 13.14653 11.42793 10.68395 10.58645
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Table B3 - Morphological and Emissivity Data for HTP-6

Total Density
Angle Between Fibers 0

Content (%)
Diameter (microns)

Length (cm)
Density (gm/cm 3)
Index of Refraction

0.0961 gm/cm 3
100.0 o

Fiber Data

Silica Alumina Nextel

76.44
1.40
1.27

2.20
1.487

21.56
3.00
1.27

3.97
1.768

0.00
11.00

1.27

2.79
1.642

SiC

2.00
38.00

0.0038

3.10

Tensile Strength (N/m 2)
Gas Conduction Factor

Solid Binding Efficiency Factors

Weak Direction

Ow= 3.172X 105

fg = 0.95047

_w'= 0.12574

_w = 0.03208

Strong Direction

Ost = 9.101X 105

_st'= 0.08136

_st = 0.06060

Temperature
°F

-250.00
0.00

250.00
500.00
750.00

1000.00
1250.00
1500.00
1750.00
2000.00
2250.00
2500.00
2750.00
3000.00

oC

-156.33
-17.44
121.44
260.33
399.22
538.11
677.00
815.89
954.78

1093.67
1232.56
1371.44
1510.33
1649.22

EW

0.48726
0.44736
0.41163
0.38007
0.35268
0.32946
0.31041
0.29553
0.28481
0.27827
0.27629
0.27769
0.28266
0.29378

Silica

ESt

0.33424
0.37798
0.41818
0.45484
0.48796
0.51754
0.54357
0.56607
0.58502
0.60043
0.61032
0.62063
0.62462
0.62666

Emissivity
Mullim

Ew Est
0.76325 0.85642
0.65822 0.85642
0.56163 0.73885
0.47348 0.62126
0.39378 0.50367
0.32252 0.38606
0.25970 0.26843
0.20533 0.15079
0.15940 0.03314
0.12192 0.03314
0.09287 0.03314
0.07228 0.03314
0.06012 0.03314
0.05641 0.03314
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Table B3 - Base Line Conductivity Data for HTP-6

HTP-6 Experimental Base Line Conductivity Values - Weak Direction

Conductivity - cal/cm-sec-°C X 10-4
Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-179.67 0.91313
21.44 1.35709
48.67 1.45010

373.11 2.55586
538.11 3.68600
641.44 4.44371
810.33 5.71151
979.22 7.85400

0.27654
0.30135
0.36500
0.90941
1.46415
2.00153
3.29331
5.13279
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Table B3 - Analytical Conductivity Data for HTP-6

HTP-6 Analytically Predicted Conductivity Values - Weak Direction

Conductivity - cal/cm-sec-°C X 10 -4
Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 1.21648 1.10462 0.94058 0.63457 0.49095
-17.44 1.28346 1.15424 0.86298 0.43746 0.31564
121.44 1.64211 1.48845 1.06401 0.57670 0.46711
260.33 2.17296 1.98121 1.41594 0.88610 0.78359
399.22 2.91482 2.65696 1.92361 1.34816 1.24836
538.11 3.75392 3.42665 2.53763 1.93426 1.83761
677.00 4.66523 4.26632 3.23541 2.61597 2.52257
815.89 5.63133 5.15927 3.99991 3.37234 3.28213
954.78 6.65398 6.10765 4.83204 4.20156 4.11436

1093.67 7.76436 7.14271 5.76136 5.13123 5.04682
1232.56 9.03271 8.33458 6.85599 6.22804 6.14615
1371.44 10.57773 9.80155 8.23216 7.60713 7.52747
1510.33 12.57596 11.71959 10.06373 9.44156 9.36381
1649.22 15.27227 14.33280 12.59272 11.97268 11.89653

HTP-6 Analytically Predicted Conductivity Values - Strong Direction

Conductivity - cal/cm-sec-°C X 10-4
Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 1.62589 1.51938 1.39036 1.11955 0.91668
-17.44 1.48196 1.36834 1.15577 0.71982 0.52514

121.44 1.84181 1.71694 1.40585 0.85839 0.67435
260.33 2.45881 2.31190 1.88609 1.25061 1.07377
399.22 3.38310 3.19050 2.61805 1.89251 1.71740
538.11 4.49521 4.25521 3.53850 2.74723 2.57566
677.00 5.72747 5.43881 4.58316 3.74443 3.57723
815.89 6.97213 6.63381 5.64588 4.77323 4.61069
954.78 8.08085 7.69199 6.57867 5.68199 5.52409

1093.67 10.46712 10.02675 8.79445 7.88075 7.72727
1232.56 13.36862 12.87560 11.52973 10.60373 10.45434
1371.44 16.82342 16.27628 14.82091 13.88551 13.73977
1510.33 20.85386 20.25066 18.68832 17.74492 17.60235
1649.22 25.46404 24.80226 23.13375 22.18256 22.04261
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Table B4 - Morphological and Emissivity Data for HTP-9

Total Density
Angle Between Fibers 0

Content (%)
Diameter (microns)
Length (cm)
Density (gm/cc)
Index of Refraction

0.1442 gm/cm 3
100.0 °

Fiber Data

Sfl_a Alumina Nextel

76.44
1.40
1.27
2.20
1.487

21.56
3.00
1.27
3.97
1.768

0.00
11.00

1.27
2.79
1.642

SiC

2.00
38.00

0.0038
3.10

Tensile Strength (N/m 2)
Gas Conduction Factor

Solid Binding Efficiency Factors

Weak Direction

Ow = 4.619X 105

fg = 1.06574

rlw'= 0.10802

rlw = 0.02390

Strong Direction

Ost = 1.558 X 106

fist' = 0.06989

Xls t = 0.05443

Temperature
oF

-250.00
0.00

250.00
500.00
750.00

1000.00
1250.00
1500.00
1750.00
2000.00
2250.00
2500.00
2750.00
3000.00

°C

-156.33
-17.44
121.44
260.33
399.22
538.11
677.00
815.89
954.78

1093.67
1232.56
1371.44
1510.33
1649.22

Ew

0.48726
0.44736
0.41163
0.38007
0.35268
0.32946
0.31041
0.29553
0.28481
0.27827

0.27629
0.27769
0.28266
0.29378

Silica

est
0.33424
0.37798
0.41818
0.45484
0.48796
0.51754
0.54357
0.56607
0.58502
0.60043
0.61032
0.62063
0.62462
0.62666

Emissivity
Mulli_

ew est
0.76325 0.85642
0.65822 0.85642
0.56163 0.73885
0.47348 0.62126
0.39378 0.50367
0.32252 0.38606
0.25970 0.26843
0.20533 0.15079
0.15940 0.03314
0.12192 0.03314
0.09287 0.03314
0.07228 0.03314
0.06012 0.03314
0.05641 0.03314
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Table B4 - Base Line Conductivity Data for HTP-9

HTP-9 Experimental Base Line Conductivity Values - Weak Direction

Conductivity - cal/cm-sec-*C X 10 -4
Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-178.56

38.11
371.44
538.11
649.22

0.28493
0.32007
0.80532
1.33679
1.69427

HTP-9 Experimental Base Line Conductivity Values - Strong Direction

Conductivity - cal/cm-sec-*C X 10-4
Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-178.56
38.11

371.44
538.11
649.22

0.49720
0.60889
1.15301
1.85325
2.31478
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Table B4 - Analytical Conductivity Data for HTP-9

HTP-9 Analytically Predicted Conductivity Values - Weak Direction

Conductivity - cal/cm-sec-°C X 10 .4
Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 1.32105 1.19609 1.00530 0.67958 0.54846
-17.44 1.31645 1.16952 0.83704 0.41616 0.31073
121.44 1.59151 1.41475 0.94258 0.47985 0.38707
190.89 1.76840 1.57403 1.03520 0.56061 0.47223
260.33 1.99907 1.77720 1.16157 0.67110 0.58525
399.22 2.58350 2.28454 1.49735 0.97246 0.88919
538.11 3.22804 2.84839 1.90580 1.36161 1.28118
677.00 3.91461 3.45201 2.37057 1.81687 1.73929
815.89 4.63059 4.08367 2.87882 2.32193 2.24710
954.78 5.37708 4.74496 3.43032 2.87423 2.80197

1093.67 6.17584 5.45775 4.04478 3.49183 3.42195
1232.56 7.07547 6.27051 4.76835 4.21972 4.15198
1371.44 8.15731 7.26411 5.67962 5.13563 5.06976
1510.33 9.54144 8.55798 6.89577 6.35605 6.29181
1649.22 11.39373 10.31711 8.57963 8.04335 7.98044

HTP-9 Analytically Predicted Conductivity Values - Strong Direction

Conductivity - caYcm-sec-°C X 10-4

Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 1.99108 1.87428 1.73450 1.44834 1.23830
-17.44 1.62825 1.50447 1.27978 0.83162 0.63504
121.44 1.85906 1.72425 1.40098 0.84603 0.66235

260.33 2.29893 2.14168 1.70343 1.06388 0.88835
399.22 2.99147 2.78606 2.19825 1.46899 1.29525

538.11 3.81261 3.55744 2.82278 2.02823 1.85807
677.00 4.71038 4.40427 3.52841 2.68687 2.52108
815.89 5.60646 5.24850 4.23838 3.36340 3.20226
954.78 6.39732 5.98668 4.84946 3.95089 3.79437

1093.67 8.04659 7.58235 6.32465 5.40948 5.25736
1232.56 10.03602 9.51708 8.14447 7.21738 7.06932
1371.44 12.39334 11.81822 10.33490 9.39875 9.25432
1510.33 15.13476 14.50149 12.91008 11.96625 11.82496
1649.22 18.26339 17.56940 15.87075 14.91940 14.78073
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Table B5 - Morphological and Emissivity Data for HTP-12

Total Density
Angle Between Fibers 0

Content (%)
Diameter (microns)

Length (cm)
Density (gm/cm 3)
Index of Refraction

0.1922 gm/cm 3
100.0 °

Fiber Data

Silica Alumina Nextel SiC

76.44 21.56 0.00 2.00
1.40 3.00 11.00 38.00
1.27 1.27 1.27 0.0038

2.20 3.97 2.79 3.10
1.487 1.768 1.642

Tensile Strength (N/m2)
Gas Conduction Factor

Solid Binding Efficiency Factors

Weak Direction

Ow = 6.067X105

fg = 1.06574

_lw'= 0.26164

rlw = 0.05413

Strong Direction

Ost = 2.206 X 106

fist' = 0.16928

_qst = 0.13426

Temperature Silica
°F °(2 ew est

-250.00 -156.33 0.48726 0.33424
0.00 -17.44 0.44736 0.37798

250.00 121.44 0.41163 0.41818
500.00 260.33 0.38007 0.45484

750.00 399.22 0.35268 0.48796
1000.00 538.11 0.32946 0.51754
1250.00 677.00 0.31041 0.54357
1500.00 815.89 0.29553 0.56607
1750.00 954.78 0.28481 0.58502
2000.00 1093.67 0.27827 0.60043
2250.00 1232.56 0.27629 0.61032
2500.00 1371.44 0.27769 0.62063
2750.00 1510.33 0.28266 0.62462
3000.00 1649.22 0.29378 0.62666

Emissivity
Mulli_

Ew Est

0.76325 0.85642
0.65822 0.85642
0.56163 0.73885
0.47348 0.62126
0.39378 0.50367
0.32252 0.38606
0.25970 0.26843
0.20533 0.15079
0.15940 0.03314
0.12192 0.03314
0.09287 0.03314
0.07228 0.03314
0.06012 0.03314
0.05641 0.03314
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Table B5 - Base Line Conductivity Data for HTP-12

HTP-12 Experimental Base Line Conductivity Values - Weak Direction

Conductivity - cal/cm-sec-*C X 10 -4

Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

24.22 1.41248 1.27441 1.10245 0.68908
260.33 2.10115 1.79112 1.37776 0.89577
538.11 2.75593 2.51452 1.96350 1.27441
815.89 3.78935 3.44460 2.61786 1.89447

1093.67 4.92611 4.47802 3.44460 2.54924
1260.33 5.47713 4.99473 3.78935 2.96261
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Table B5 - Analytical Conductivity Data for HTP-12

HTP-12 Analytically Predicted Conductivity Values - Weak Direction

Conductivity - cal/cm-sec-°C X 10 -4
Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 2.36065 2.23612 2.03776 1.71828 1.60216
-17.44 1.75332 1.60345 1.25723 0.85919 0.76770
121.44 1.86318 1.67947 1.19249 0.76384 0.68392
260.33 2.13265 1.89937 1.27116 0.82307 0.74939
399.22 2.58427 2.26880 1.47368 0.99894 0.92765
538.11 3.10122 2.69982 1.75597 1.26750 1.19874
677.00 3.65890 3.16937 2.09459 1.60055 1.53430
815.89 4.23868 3.65982 2.47029 1.97580 1.91195
954.78 4.83698 4.16816 2.87786 2.38603 2.32443

1093.67 5.47026 4.71100 3.33151 2.84410 2.78455
1232.56 6.17785 5.32750 3.86799 3.38577 3.32806
1371.44 7.02378 6.08126 4.54853 4.07154 4.01546
1510.33 8.09906 7.06256 5.46116 4.98893 4.93425
1649.22 9.52708 8.39386 6.72623 6.25789 6.20436

HTP-12 Analytically Predicted Conductivity Values - Strong Direction

Conductivity - cal/cm-sec-°C X 10-4
Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 4.70351 4.58876 4.44920 4.16465 3.96445
-17.44 2.81393 2.69162 2.46522 2.02501 1.84000
121.44 2.67386 2.53982 2.21354 1.67293 1.50098

260.33 2.84055 2.68339 2.24162 1.62234 1.45851
399.22 3.29849 3.09267 2.50170 1.79885 1.63701
538.11 3.91489 3.65871 2.92195 2.15906 2.00076
677.00 4.62122 4.31343 3.43712 2.63162 2.47753
815.89 5.33397 4.97360 3.96516 3.12985 2.98019
954.78 5.96291 5.54909 4.41606 3.56015 3.41487

1093.67 7.22975 6.76157 5.51084 4.64081 4.49968
1232.56 8.75187 8.22820 6.86558 5.98571 5.84840
1371.44 10.55651 9.97587 8.50574 7.61861 7.48472
1510.33 12.65702 12.01743 10.44256 9.54936 9.41842
1649.22 15.05190 14.35080 12.67220 11.77297 11.64448
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Table B6 - Morphological and Emissivity Data for LI-2200

Total Density
Angle Between Fibers 0

0.3524 grn/cm 3
100.0 °

Fiber Data

Silica Alumina Nextel

Content (%)
Diameter (microns)
Length (cm)

Density (grn/cm 3)
Index of Refraction

98.00
1.40
1.27

2.20
1.487

0.00
3.00
1.27

3.97
1.768

0.00
11.00

1.27

2.79
1.642

SiC

2.00
75.00

0.0075

3.10

Tensile Strength (N/m 2)
Gas Conduction Factor

Solid Binding Efficiency Factors

Weak Direction

Ow = 5.033 X 105

fg = 1.59464

rlw'= 0.42537

rlw = 0.12371

Strong Direction

Ost = 1.241 X 106

fist' = 0.24154
_]st = 0.17130

Temperature
oF

-250.00
0.00

250.00
500.00
750.00

1000.00
1250.00

1500.00
1750.00
2000.00
2250.00
2500.00
2750.00
3000.00

°C

-156.33
-17.44
121.44
260.33
399.22
538.11

677.00
815.89
954.78

1093.67
1232.56
1371.44
1510.33
1649.22

EW

0.48726
0.44736
0.41163
0.38007
0.35268
0.32946
0.31041
0.29553
0.28481
0.27827
0.27629
0.27769
0.28266
0.29378

Emissivity
_st

0.99031
0.84486
0.71393
0.59734
0.49566
0.40831
0.33549
0.27719
0.23342
0.20417
0.19190
0.18925
0.20119
0.23243
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Table B6 - BaseLine Conductivity Data for LI-2200

Experimental Base Line Conductivity Values - Weak Direction

Conductivity - cal/cm-sec-"C X 10 -4
Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 0.96604 0.90404 0.80855 0.61220 0.52332
-17.44 1.69026 1.55385 1.24755 0.89742 0.70851
121.44 2.23012 1.89116 1.44307 1.08302 0.87923
260.33 2.76791 2.18589 1.59726 1.26573 1.06153
399.22 3.14615 2.61910 1.75682 1.37238 1.23597
538.11 3.52355 2.96013 1.93539 1.52285 1.42529
677.00 3.89972 3.16475 2.14579 1.73904 1.63653
815.89 4.93644 4.35359 3.01221 2.34586 2.20036
954.78 6.13852 5.80038 4.12335 3.05727 2.85679

Experimental Base Line Conductivity Values - Strong Direction

Conductivity - cal/cm-sec-*C X 10-4
Pressure - Atmospheres

T (°C) 1.0000 O.1000 0.01 O0 0.0010 0.0001

-156.33 1.28806 1.25209 1.12395 0.90900 0.79615
-17.44 2.15324 2.04328 1.73243 1.39966 0.96273
121.44 2.78321 2.52733 2.06188 1.65471 1.28103
260.33 3.38342 2.94608 2.36405 1.91720 1.67042
399.22 3.76082 3.22303 2.50915 2.06147 1.85106
538.11 4.23496 3.58060 2.67449 2.21896 2.03377
677.00 4.85253 4.05638 2.86836 2.39630 2.22806
815.89 5.36676 4.55491 3.38714 2.91425 2.72120
954.78 5.85453 5.05921 3.92328 3.51528 3.29868
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Table B6 - Analytical Conductivity Data for LI-2200

LI-2200 Analytically Predicted Conductivity Values - Weak Direction

Conductivity - cal/cm-sec-°C X 10 .4

Pressure - Atmospheres

T (*C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 1.37958 1.20261 0.90911 0.54165 0.44316
-17.44 1.84187 1.62480 1.16273 0.78228 0.71392
121.44 2.16711 1.90160 1.30586 0.93517 0.87874
260.33 2.50487 2.17113 1.44803 1.08250 1.03190
399.22 3.01146 2.56265 1.67711 1.29992 1.25121
538.11 3.58476 3.01764 1.99471 1.61414 1.56733
677.00 4.22365 3.53724 2.39906 2.01992 1.97493
815.89 4.91710 4.11181 2.87717 2.50221 2.45894
954.78 5.66958 4.74650 3.43077 3.06149 3.01980

1093.67 6.51465 5.47502 4.09041 3.72742 3.68716
1232.56 7.51354 6.35823 4.91404 4.55739 4.51841
1371.44 8.74168 7.47086 5.97376 5.62306 5.58521
1510.33 10.27325 8.88607 7.34037 6.99494 6.95806
1649.22 12.18066 10.67498 9.08287 8.74181 8.70573

LI-2200 Analytically Predicted Conductivity Values - Strong Direction

Conductivity - cal/cm-sec-*C X 10-4
Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 1.54861 1.37959 1.12117 0.74169 0.61533
-17.44 2.13029 1.93314 1.52006 1.09322 1.00219
121.44 2.54015 2.30767 1.75984 1.32497 1.24886
260.33 2.94711 2.66096 1.97810 1.53680 1.46812
399.22 3.51100 3.12821 2.27164 1.80697 1.74059
538.11 4.10969 3.62686 2.61728 2.14137 2.07741
677.00 4.70950 4.12493 2.98204 2.50242 2.44083
815.89 5.26922 4.58224 3.32363 2.84494 2.78561
954.78 5.78021 4.99072 3.63139 3.15640 3.09918

1093.67 6.29049 5.39849 3.95076 3.48095 3.42565
1232.56 6.90780 5.91303 4.38654 3.92250 3.86893
1371.44 7.78604 6.68766 5.08953 4.63119 4.57913
1510.33 9.10908 7.90540 6.24035 5.78715 5.73640
1649.22 11.09502 9.78328 8.05382 7.60484 7.55516
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Appendix C

Predicted Conductivity Data

For

LI-900,
FRCI-12,

HTP-6, HTP-9, HTP-12,
and

LI-2200

in CO2





Table C1 - Analytical Conductivity Data for LI-900 in CO2

LI-900 Analytically Predicted Conductivity Values in CO2 - Weak Direction

Conductivity - cal/cm-sec-°C X 10.4
Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 0.49029 0.43763 0.36489 0.22624 0.15473
-17.44 0.84578 0.76972 0.60894 0.35724 0.27871
121.44 1.28952 1.17304 0.86483 0.47829 0.38450
260.33 1.71809 1.55749 1.09329 0.61410 0.51492
399.22 2.25702 2.02721 1.37578 0.81141 0.70748
538.11 2.84618 2.54254 1.70941 1.08449 0.97885
677.00 3.48876 3.10833 2.10443 1.43771 1.33215
815.89 4.18607 3.72746 2.56695 1.87290 1.76858
954.78 4.94915 4.41239 3.11131 2.40133 2.29903

1093.67 5.80564 5.19209 3.76749 3.05071 2.95099
1232.56 6.80060 6.11283 4.58227 3.86608 3.76934
1371.44 7.99250 7.23418 5.61534 4.90583 4.81239

1510.33 9.44843 8.62431 6.93475 6.23698 6.14707
1649.22 11.24532 10.36108 8.61810 7.93632 7.85013

LI-900 Analytically Predicted Conductivity Values in CO2 - Strong Direction

Conductivity - cal/cm-sec-°C X 10 -4
Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 0.68608 0.63610 0.58174 0.47073 0.36348
-17.44 1.17967 1.11355 1.00824 0.76641 0.62453
121.44 1.68818 1.59595 1.39849 0.97866 0.79526
260.33 2.17897 2.06115 1.75777 1.18867 0.98596
399.22 2.85006 2.68755 2.24478 1.52611 1.30758
538.11 3.69200 3.48330 2.89540 2.05414 1.82761
677.00 4.73817 4.48243 3.74880 2.80924 2.57961
815.89 6.00836 5.70538 4.82938 3.81292 3.58347
954.78 7.52873 7.17896 6.16694 5.09231 4.86533

1093.67 9.34058 8.94505 7.80571 6.68930 6.46647
1232.56 11.49452 11.05484 9.79872 8.65489 8.43746
1371.44 14.03325 13.55161 12.19064 11.03201 10.82095
1510.33 16.97239 16.45152 14.99871 13.83643 13.63250
1649.22 20.29555 19.73868 18.20789 17.05184 16.85566
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Table C2 - Analytical Conductivity Data for FRCI-12 in CO2

FRCI-12 Analytically Predicted Conductivity Values in CO2 - Weak Direction

Conductivity - cal/cm-sec-*C X 10 -4

Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 0.64412 0.59155 0.51900 0.38134 0.31076
-17.44 0.95943 0.88356 0.72375 0.47508 0.39790
121.44 1.42198 1.30592 1.00034 0.61948 0.52749
260.33 1.91820 1.75835 1.29881 0.82736 0.73017
399.22 2.55273 2.32409 1.67957 1.12458 1.02275

538.11 3.24261 2.94061 2.11668 1.50239 1.39889
677.00 3.96584 3.58758 2.59514 1.93995 1.83654
815.89 4.69405 4.23816 3.09128 2.40940 2.30722
954.78 5.40187 4.86842 3.58298 2.88561 2.78541

1093.67 6.07351 5.46387 4.05677 3.35283 3.25516
1232.56 6.70554 6.02227 4.51086 3.80762 3.71287
1371.44 7.30673 6.55352 4.95527 4.25868 4.16716
1510.33 7.89742 7.07898 5.41123 4.72625 4.63819
1649.22 8.51256 7.63454 5.91437 5.24516 5.16075

FRCI-12 Analytically Predicted Conductivity Values in CO2 - Strong Direction

Conductivity - cal/cm-sec-*C X 10 -4
Pressure - Atmospheres

T(°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 0.89397 0.84348 0.78489 0.66447 0.56840
-17.44 1.27502 1.20684 1.08788 0.83919 0.72036
121.44 1.81109 1.71369 1.48755 1.07218 0.92316
260.33 2.39316 2.26609 1.91916 1.37194 1.21006
399.22 3.12004 2.94281 2.44107 1.76512 1.59249
538.11 3.89647 3.66677 3.00682 2.22957 2.05196
677.00 4.69581 4.41222 3.59626 2.74099 2.56196
815.89 5.50902 5.17096 4.20521 3.29159 3.11347
954.78 6.37037 5.97808 4.87168 3.91631 3.74071

1093.67 7.37784 6.93231 5.69653 4.71350 4.54159
1232.56 8.36366 7.86662 6.51428 5.51564 5.34829
1371.44 10.00147 9.45536 8.00038 6.99649 6.83436
1510.33 11.87682 11.28475 9.74184 8.74166 8.58527
1649.22 13.98140 13.34710 11.73153 10.74285 10.59261
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Table C3 - Analytical Conductivity Data for HTP-6 in CO2

HTP-6 Analytically Predicted Conductivity Values in CO2 - Weak Direction

Conductivity - cal/cm-sec-°C X 10 -4
Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 0.80340 0.75535 0.69410 0.56765 0.48441
-17.44 0.86636 0.79907 0.66551 0.41315 0.31408
121.44 1.36268 1.26250 1.00217 0.59205 0.46971
260.33 1.98341 1.84809 1.44751 0.91952 0.78787
399.22 2.79541 2.60354 2.03050 1.39272 1.25361
538.11 3.70343 3.45152 2.70599 1.98562 1.84340
677.00 4.67883 4.36458 3.45239 2.67134 2.52864
815.89 5.70063 5.32289 4.25381 3.42978 3.28831
954.78 6.76704 6.32572 5.11215 4.25960 4.12053

1093.67 7.90572 7.40174 6.05783 5.18870 5.05286
1232.56 9.18346 8.61869 7.15975 6.28397 6.15198
1371.44 10.71551 10.09269 8.53476 7.66069 7.53302
1510.33 12.67501 11.99775 10.35726 9.49200 9.36901
1649.22 15.30346 14.57612 12.86971 12.01933 11.90132

HTP-6 Analytically Predicted Conductivity Values in CO2 - Strong Direction

Conductivity - cal/cm-sec-°C X 10 -4
Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 1.21229 1.16576 1.11561 1.01172 0.90427
-17.44 1.06353 1.00207 0.90446 0.66989 0.52199
121.44 1.56038 1.47468 1.29001 0.87379 0.67901
260.33 2.26646 2.15696 1.87102 1.29905 1.08163
399.22 3.25985 3.10886 2.68985 1.96238 1.72711
538.11 4.43978 4.24590 3.68744 2.83097 2.58643
677.00 5.73498 5.49740 4.79809 3.83695 3.58856
815.89 7.03409 6.75263 5.91492 4.87083 4.62224
954.78 8.18524 7.86026 6.88961 5.78183 5.53561

1093.67 10.59832 10.23078 9.13501 7.98054 7.73858
1232.56 13.50752 13.09888 11.88768 10.70156 10.46526
1371.44 16.94738 16.49963 15.18418 13.97971 13.75017
1510.33 20.93674 20.45239 19.04502 17.83402 17.61210
1649.22 25.47622 24.95823 23.47220 22.26521 22.05161
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Table C4 - Analytical Conductivity Data for HTP-9 in CO2

HTP-9 Analytically Predicted Conductivity Values in CO2 - Weak Direction

Conductivity - cal/cm-sec-*C X 10 -4

Pressure - Atmospheres

T(°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 0.87376 0.82036 0.74938 0.61082 0.53302
-17.44 0.88007 0.80422 0.64973 0.39202 0.30500
121.44 1.30136 1.18708 0.89101 0.48913 0.38447
260.33 1.80065 1.64502 1.19705 0.69324 0.58215
399.22 2.45410 2.23255 1.59961 1.00082 0.88407
538.11 3.16609 2.87443 2.05999 1.39223 1.27333
677.00 3.91551 3.55106 2.56429 1.84775 1.72878
815.89 4.68668 4.24817 3.10182 2.35236 2.23466
954.78 5.47755 4.96502 3.67404 2.90431 2.78880

1093.67 6.30652 5.72120 4.30189 3.52211 3.40944
1232.56 7.21855 6.56281 5.03221 4.25077 4.14141
1371.44 8.29094 7.56819 5.94371 5.16754 5.06185
1510.33 9.63922 8.85386 7.15297 6.38790 6.28617
1649.22 11.42414 10.58146 8.82153 8.07247 7.97493

HTP-9 Analytically Predicted Conductivity Values in CO2 - Strong Direction

Conductivity - cal/cm-sec-*C X 10 .4
Pressure - Atmospheres

T (*C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 1.53045 1.47940 1.42485 1.31457 1.20317
-17.44 1.18496 1.11781 1.01391 0.77188 0.62249
121.44 1.56222 1.46919 1.27595 0.85279 0.65845
260.33 2.09288 1.97481 1.67864 1.10155 0.88592
399.22 2.85300 2.69070 2.25789 1.52509 1.29192
538.11 3.74098 3.53315 2.95751 2.09584 1.85361
677.00 4.70339 4.44934 3.72973 2.76372 2.51777
815.89 5.66096 5.36064 4.49980 3.45132 3.20526
954.78 6.50982 6.16373 5.16745 4.05584 3.81218

1093.67 8.18957 7.79882 6.67527 5.51755 5.27815
1232.56 10.19073 9.75697 8.51619 7.32739 7.09364
1371.44 12.53750 12.06290 10.71640 9.50983 9.28280
1510.33 15.24255 14.72981 13.29026 12.07770 11.85823
1649.22 18.30535 17.75767 16.23865 15.03061 14.81938
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Table C5 - Analytical Conductivity Data for HTP-12 in CO2

HTP-12 Analytically Predicted Conductivity Values in CO2 - Weak Direction

Conductivity - cal/cm-sec-*C X 10 -4

Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 1.90288 1.84997 1.77652 1.63786 1.56780
-17.44 1.31930 1.24275 1.08066 0.83138 0.75506
121.44 1.57585 1.45844 1.14868 0.76800 0.67714
260.33 1.93765 1.77566 1.31034 0.84008 0.74416
399.22 2.45902 2.22714 1.57531 1.02257 0.92211
538.11 3.04384 2.73740 1.90504 1.29397 1.19190
677.00 3.66459 3.28064 2.27902 1.62789 1.52594
815.89 4.29962 3.83677 2.68029 2.00318 1.90244
954.78 4.94222 4.40055 3.10536 2.41332 2.31455

1093.67 5.60555 4.98645 3.56968 2.87153 2.77526

1232.56 6.32546 5.63156 4.11076 3.41364 3.32026
1371.44 7.16222 6.39730 4.79007 4.09984 4.00965
1510.33 8.20269 7.37155 5.69537 5.01689 4.93012
1649.22 9.56564 8.67404 6.94607 6.28343 6.20026

HTP-12 Analytically Predicted Conductivity Values in CO2 - Strong Direction

Conductivity - cal/cm-sec-*C X 10-4
Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 4.20096 4.15087 4.09662 3.98634 3.87924
-17.44 2.36110 2.29494 2.19043 1.95067 1.80909
121.44 2.37236 2.28026 2.08498 1.66897 1.48601
260.33 2.63293 2.51551 2.21597 1.65195 1.44974
399.22 3.16061 2.99882 2.56169 1.84886 1.63078
538.11 3.84480 3.63719 3.05674 2.22177 1.99563
677.00 4.61549 4.36126 3.63685 2.70379 2.47450
815.89 5.38789 5.08691 4.22175 3.21184 2.98267
954.78 6.07077 5.72349 4.72381 3.65566 3.42893

1093.67 7.36710 6.97457 5.84892 4.73882 4.51621
1232.56 8.90004 8.46389 7.22261 6.08487 5.86764
1371.44 10.69347 10.21588 8.87072 7.71792 7.50704
1510.33 12.75729 12.24096 10.80475 9.64802 9.44424
1649.22 15.08642 14.53458 13.02100 11.87018 11.67413
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Table C6 - Analytical Conductivity Data for LI-2200 in CO2

LI-2200 Analytically Predicted Conductivity Values in CO2 - Weak Direction

Conductivity - cal/cm-sec-°C X 10 -4

Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 0.85538 0.78112 0.67168 0.50176 0.43967
-17.44 1.36136 1.25190 1.02643 0.77183 0.71320
121.44 1.86549 1.69679 1.29631 0.94548 0.87999
260.33 2.30980 2.07755 1.50810 1.10086 1.03389
399.22 2.89369 2.56139 1.78759 1.32323 1.25364
538.11 3.54313 3.10490 2.14191 1.64034 1.56999
677.00 4.25312 3.70577 2.57241 2.04772 1.97772
815.89 5.00885 4.35160 3.06823 2.53074 2.46178
954.78 5.81108 5.04523 3.63261 3.09009 3.02262

1093.67 6.68975 5.81851 4.29714 3.75557 3.68993
1232.56 7.70253 6.73076 5.12056 4.58466 4.52109
1371.44 8.92137 7.85542 6.17555 5.64908 5.58775
1510.33 10.41704 9.26459 7.53335 7.01938 6.96044
1649.22 12.25860 11.02852 9.26331 8.76437 8.70793

LI-2200 Analytically Predicted Conductivity Values in CO2 - Strong Direction

Conductivity - cal/cm-sec-°C X 10 -4
Pressure - Atmospheres

T (°C) 1.0000 0.1000 0.0100 0.0010 0.0001

-156.33 1.02357 0.95163 0.85495 0.68762 0.61049
-17.44 1.64786 1.54612 1.34937 1.07775 1.00117
121.44 2.23582 2.08465 1.72987 1.33769 1.25058
260.33 2.74839 2.54557 2.03076 1.56080 1.47086
399.22 3.38829 3.10109 2.38657 1.83796 1.74393
538.11 4.06175 3.68556 2.77982 2.17651 2.08109
677.00 4.73126 4.26341 3.18007 2.53991 2.44468
815.89 5.35178 4.79140 3.54697 2.88355 2.78953
954.78 5.91095 5.25879 3.87131 3.19521 3.10308

1093.67 6.45311 5.71142 4.19965 3.51924 3.42948
1232.56 7.08235 6.25474 4.63764 3.95965 3.87262
1371.44 7.94901 7.04033 5.33675 4.66668 4.58264
1510.33 9.23344 8.24968 6.47812 5.82052 5.73969
1649.22 11.15026 10.09848 8.27700 7.63565 7.55820
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