59 research outputs found

    Different forms of TFIIH for transcription and DNA repair: Holo-TFIIH and a nucleotide excision repairosome

    Get PDF
    AbstractYeast TFIIH that is active in transcription can be dissociated into three components: a 5-subunit core, the SSL2 gene product, and a complex of 47 kDa, 45 kDa, and 33 kDa polypeptides that possesses protein kinase activity directed towards the C-terminal repeat domain of RNA polymerase II. These three components can reconstitute fully functional TFIIH, and all three are required for transcription in vitro. By contrast, TFIIH that is highly active in nucleotide excision repair (NER) lacks the kinase complex and instead contains the products of all other genes known to be required for NER in yeast: RAD1, RAD2, RAD4, RAD10, and RAD14. This repairosome is not active in reconstituted transcription in vitro and is significantly more active than any of the constituent polypeptides in correcting defective repair in extracts from strains mutated in NER genes

    Predicting Human Nucleosome Occupancy from Primary Sequence

    Get PDF
    Nucleosomes are the fundamental repeating unit of chromatin and comprise the structural building blocks of the living eukaryotic genome. Micrococcal nuclease (MNase) has long been used to delineate nucleosomal organization. Microarray-based nucleosome mapping experiments in yeast chromatin have revealed regularly-spaced translational phasing of nucleosomes. These data have been used to train computational models of sequence-directed nuclesosome positioning, which have identified ubiquitous strong intrinsic nucleosome positioning signals. Here, we successfully apply this approach to nucleosome positioning experiments from human chromatin. The predictions made by the human-trained and yeast-trained models are strongly correlated, suggesting a shared mechanism for sequence-based determination of nucleosome occupancy. In addition, we observed striking complementarity between classifiers trained on experimental data from weakly versus heavily digested MNase samples. In the former case, the resulting model accurately identifies nucleosome-forming sequences; in the latter, the classifier excels at identifying nucleosome-free regions. Using this model we are able to identify several characteristics of nucleosome-forming and nucleosome-disfavoring sequences. First, by combining results from each classifier applied de novo across the human ENCODE regions, the classifier reveals distinct sequence composition and periodicity features of nucleosome-forming and nucleosome-disfavoring sequences. Short runs of dinucleotide repeat appear as a hallmark of nucleosome-disfavoring sequences, while nucleosome-forming sequences contain short periodic runs of GC base pairs. Second, we show that nucleosome phasing is most frequently predicted flanking nucleosome-free regions. The results suggest that the major mechanism of nucleosome positioning in vivo is boundary-event-driven and affirm the classical statistical positioning theory of nucleosome organization

    Cloning whole bacterial genomes in yeast

    Get PDF
    Most microbes have not been cultured, and many of those that are cultivatable are difficult, dangerous or expensive to propagate or are genetically intractable. Routine cloning of large genome fractions or whole genomes from these organisms would significantly enhance their discovery and genetic and functional characterization. Here we report the cloning of whole bacterial genomes in the yeast Saccharomyces cerevisiae as single-DNA molecules. We cloned the genomes of Mycoplasma genitalium (0.6 Mb), M. pneumoniae (0.8 Mb) and M. mycoides subspecies capri (1.1 Mb) as yeast circular centromeric plasmids. These genomes appear to be stably maintained in a host that has efficient, well-established methods for DNA manipulation

    The direct effect of Focal Adhesion Kinase (FAK), dominant-negative FAK, FAK-CD and FAK siRNA on gene expression and human MCF-7 breast cancer cell tumorigenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that plays an important role in survival signaling. FAK has been shown to be overexpressed in breast cancer tumors at early stages of tumorigenesis.</p> <p>Methods</p> <p>To study the direct effect of FAK on breast tumorigenesis, we developed Tet-ON (tetracycline-inducible) system of MCF-7 breast cancer cells stably transfected with FAK or dominant-negative, C-terminal domain of FAK (FAK-CD), and also FAKsiRNA with silenced FAK MCF-7 stable cell line. Increased expression of FAK in isogenic Tet-inducible MCF-7 cells caused increased cell growth, adhesion and soft agar colony formation <it>in vitro</it>, while expression of dominant-negative FAK inhibitor caused inhibition of these cellular processes. To study the role of induced FAK and FAK-CD <it>in vivo</it>, we inoculated these Tet-inducible cells in nude mice to generate tumors in the presence or absence of doxycycline in the drinking water. FAKsiRNA-MCF-7 cells were also injected into nude mice to generate xenograft tumors.</p> <p>Results</p> <p>Induction of FAK resulted in significant increased tumorigenesis, while induced FAK-CD resulted in decreased tumorigenesis. Taq Man Low Density Array assay demonstrated specific induction of FAKmRNA in MCF-7-Tet-ON-FAK cells. DMP1, encoding cyclin D binding myb-like protein 1 was one of the genes specifically affected by Tet-inducible FAK or FAK-CD in breast xenograft tumors. In addition, silencing of FAK in MCF-7 cells with FAK siRNA caused increased cell rounding, decreased cell viability <it>in vitro </it>and inhibited tumorigenesis <it>in vivo</it>. Importantly, Affymetrix microarray gene profiling analysis using Human Genome U133A GeneChips revealed >4300 genes, known to be involved in apoptosis, cell cycle, and adhesion that were significantly down- or up-regulated (p < 0.05) by FAKsiRNA.</p> <p>Conclusion</p> <p>Thus, these data for the first time demonstrate the direct effect of FAK expression and function on MCF-7 breast cancer tumorigenesis <it>in vivo </it>and reveal specific expression of genes affected by silencing of FAK.</p

    Suitability of external controls for drug evaluation in Duchenne muscular dystrophy

    Get PDF
    OBJECTIVE: To evaluate the suitability of real-world data (RWD) and natural history data (NHD) for use as external controls in drug evaluations for ambulatory Duchenne muscular dystrophy (DMD). METHODS: The consistency of changes in the 6-minute walk distance (Δ6MWD) was assessed across multiple clinical trial placebo arms and sources of NHD/RWD. Six placebo arms reporting 48-week Δ6MWD were identified via literature review and represented 4 sets of inclusion/exclusion criteria (n = 383 patients in total). Five sources of RWD/NHD were contributed by Universitaire Ziekenhuizen Leuven, DMD Italian Group, The Cooperative International Neuromuscular Research Group, ImagingDMD, and the PRO-DMD-01 study (n = 430 patients, in total). Mean Δ6MWD was compared between each placebo arm and RWD/NHD source after subjecting the latter to the inclusion/exclusion criteria of the trial for baseline age, ambulatory function, and steroid use. Baseline covariate adjustment was investigated in a subset of patients with available data. RESULTS: Analyses included ∼1,200 patient-years of follow-up. Differences in mean Δ6MWD between trial placebo arms and RWD/NHD cohorts ranged from -19.4 m (i.e., better outcomes in RWD/NHD) to 19.5 m (i.e., worse outcomes in RWD/NHD) and were not statistically significant before or after covariate adjustment. CONCLUSIONS: We found that Δ6MWD was consistent between placebo arms and RWD/NHD subjected to equivalent inclusion/exclusion criteria. No evidence for systematic bias was detected. These findings are encouraging for the use of RWD/NHD to augment, or possibly replace, placebo controls in DMD trials. Multi-institution collaboration through the Collaborative Trajectory Analysis Project rendered this study feasible

    Acetylation of core histones in response to HDAC inhibitors is diminished in mitotic HeLa cells

    Get PDF
    Histone acetylation is a key modification that regulates chromatin accessibility. Here we show that treatment with butyrate or other histone deacetylase (HDAC) inhibitors does not induce histone hyperacetylation in metaphase-arrested HeLa cells. When compared to similarly treated interphase cells, acetylation levels are significantly decreased in all four core histones and at all individual sites examined. However, the extent of the decrease varies, ranging from only slight reduction at H3K23 and H4K12 to no acetylation at H3K27 and barely detectable acetylation at H4K16. Our results show that the bulk effect is not due to increased or butyrate-insensitive HDAC activity, though these factors may play a role with some individual sites. We conclude that the lack of histone acetylation during mitosis is primarily due to changes in histone acetyltransferases (HATs) or changes in chromatin. The effects of protein phosphatase inhibitors on histone acetylation in cell lysates suggest that the reduced ability of histones to become acetylated in mitotic cells depends on protein phosphorylation
    corecore