43 research outputs found

    SIM_EXPLORE: Software for Directed Exploration of Complex Systems

    Get PDF
    Physics-based numerical simulation codes are widely used in science and engineering to model complex systems that would be infeasible to study otherwise. While such codes may provide the highest- fidelity representation of system behavior, they are often so slow to run that insight into the system is limited. Trying to understand the effects of inputs on outputs by conducting an exhaustive grid-based sweep over the input parameter space is simply too time-consuming. An alternative approach called "directed exploration" has been developed to harvest information from numerical simulators more efficiently. The basic idea is to employ active learning and supervised machine learning to choose cleverly at each step which simulation trials to run next based on the results of previous trials. SIM_EXPLORE is a new computer program that uses directed exploration to explore efficiently complex systems represented by numerical simulations. The software sequentially identifies and runs simulation trials that it believes will be most informative given the results of previous trials. The results of new trials are incorporated into the software's model of the system behavior. The updated model is then used to pick the next round of new trials. This process, implemented as a closed-loop system wrapped around existing simulation code, provides a means to improve the speed and efficiency with which a set of simulations can yield scientifically useful results. The software focuses on the case in which the feedback from the simulation trials is binary-valued, i.e., the learner is only informed of the success or failure of the simulation trial to produce a desired output. The software offers a number of choices for the supervised learning algorithm (the method used to model the system behavior given the results so far) and a number of choices for the active learning strategy (the method used to choose which new simulation trials to run given the current behavior model). The software also makes use of the LEGION distributed computing framework to leverage the power of a set of compute nodes. The approach has been demonstrated on a planetary science application in which numerical simulations are used to study the formation of asteroid families

    Physical Properties of (2) Pallas

    Full text link
    We acquired and analyzed adaptive-optics imaging observations of asteroid (2) Pallas from Keck II and the Very Large Telescope taken during four Pallas oppositions between 2003 and 2007, with spatial resolution spanning 32-88 km (image scales 13-20 km/pix). We improve our determination of the size, shape, and pole by a novel method that combines our AO data with 51 visual light-curves spanning 34 years of observations as well as occultation data. The shape model of Pallas derived here reproduces well both the projected shape of Pallas on the sky and light-curve behavior at all the epochs considered. We resolved the pole ambiguity and found the spin-vector coordinates to be within 5 deg. of [long, lat] = [30 deg., -16 deg.] in the ECJ2000.0 reference frame, indicating a high obliquity of ~84 deg., leading to high seasonal contrast. The best triaxial-ellipsoid fit returns radii of a=275 km, b= 258 km, and c= 238 km. From the mass of Pallas determined by gravitational perturbation on other minor bodies [(1.2 +/- 0.3) x 10-10 Solar Masses], we derive a density of 3.4 +/- 0.9 g.cm-3 significantly different from the density of C-type (1) Ceres of 2.2 +/- 0.1 g.cm-3. Considering the spectral similarities of Pallas and Ceres at visible and near-infrared wavelengths, this may point to fundamental differences in the interior composition or structure of these two bodies. We define a planetocentric longitude system for Pallas, following IAU guidelines. We also present the first albedo maps of Pallas covering ~80% of the surface in K-band. These maps reveal features with diameters in the 70-180 km range and an albedo contrast of about 6% wrt the mean surface albedo.Comment: 16 pages, 8 figures, 6 table

    Preliminary results of Galileo direct imaging of S-L 9 impacts

    Get PDF
    Direct Galileo imaging data were obtained of the Jupiter impact sites for Comet Shoemaker-Levy 9 fragments K, N, and W during their early, high-energy phases. Initial ∼5s-long flashes for all 3 impacts result from radiant bolides; analogous, abrupt onsets of luminosity observed by the Galileo photopolarimeter for other impacts must also be the bolide phase. The 3 bolides were dim at 0.56 or 0.89µm (few percent of total Jupiter) and had similar amplitudes, despite huge late-stage differences observed from Earth. Subsequent, continuous luminosity lasting ∼40s for K and ∼10s for N is optical radiation as the initial bolide train erupts into a “fireball”. The K light curve may show (a) two impacts 10s apart or (b) delayed evolution of the fireball

    The remarkable surface homogeneity of the Dawn mission target (1) Ceres

    Full text link
    Dwarf-planet (1) Ceres is one of the two targets, along with (4) Vesta, that will be studied by the NASA Dawn spacecraft via imaging, visible and near-infrared spectroscopy, and gamma-ray and neutron spectroscopy. While Ceres' visible and near-infrared disk-integrated spectra have been well characterized, little has been done about quantifying spectral variations over the surface. Any spectral variation would give us insights on the geographical variation of the composition and/or the surface age. The only work so far was that of Rivkin & Volquardsen (2010, Icarus 206, 327) who reported rotationally-resolved spectroscopic (disk-integrated) observations in the 2.2-4.0 {\mu}m range; their observations showed evidence for a relatively uniform surface. Here, we report disk-resolved observations of Ceres with SINFONI (ESO VLT) in the 1.17-1.32 {\mu}m and 1.45-2.35 {\mu}m wavelength ranges. The observations were made under excellent seeing conditions (0.6"), allowing us to reach a spatial resolution of ~75 km on Ceres' surface. We do not find any spectral variation above a 3% level, suggesting a homogeneous surface at our spatial resolution. Slight variations (about 2%) of the spectral slope are detected, geographically correlated with the albedo markings reported from the analysis of the HST and Keck disk-resolved images of Ceres (Li et al., 2006, Icarus 182, 143; Carry et al., 2008, A&A 478, 235). Given the lack of constraints on the surface composition of Ceres, however, we cannot assert the causes of these variations.Comment: 8 pages, 5 figures, 2 tables, accepted for publication in Icaru

    Near-infrared Mapping Of Ceres Surface From Keck

    No full text
    International audienc

    KOALA: 3-D shape of asteroids from multi-data inversion

    No full text
    International audienceWe describe our on-going observing program to determine the physical properties of asteroids from groundbased facilities. We combine disk-resolved images from adaptive optics, optical lightcurves, and stellar occultations to put tighter constraints on the spin, 3-D shape, and size of asteroids. We will discuss the relevance of the determination of physical properties to help understand the asteroid population (e.g., density, composition, and non-gravitational forces). We will then briefly describe our multi-data inversion algorithm KOALA (Carry et al. 2010a, Kaasalainen 2011, see also Kaasalainen et al., same meeting), which allows the determination of certain physical properties of an asteroid from the combination of different techniques of observation. A comparison of results obtained with KOALA on asteroid (21) Lutetia, prior to the ESA Rosetta flyby, with the high spatial resolution images returned from that flyby, will then be presented, showing the high accuracy of KOALA inversion. Finally, we will describe our current development of the algorithm, and focus on examples of other asteroids currently being studied with KOALA
    corecore