99 research outputs found

    Contribution of nanoclays to the barrier properties of a model proton exchange membrane for fuel cell application

    Get PDF
    peer reviewedaudience: researcherDirect methanol fuel cells (DMFCs) that use a proton exchange membrane (PEM) as electrolyte, is a promising alternative source of energy for the future. However, methanol crossover from the anodic side to the cathodic one is a major problem in DMFC. Proper dispersion of layered silicates within the fuel cell membrane has been proposed as a strategy for improving the barrier properties of the membrane. The validity of this approach has been tested in case of a model membrane consisting of phosphotungstic acid doped poly(vinyl alcohol). A solvent casting technique has been used, which allows the nanofiller to be delaminated by an ultrasonic pre-treatment, as confirmed by TEM and XRD analysis. The layered silicates have a favourable impact on the methanol permeability, whose the decrease overcompensates some loss in ionic conductivity

    Perching but not foraging networks predict the spread of novel foraging skills in starlings

    Get PDF
    The directed social learning hypothesis suggests that information does not spread evenly through animal groups, but rather individual characteristics and patterns of physical proximity guide the social transmission of information along specific pathways. Network-based diffusion analysis (NBDA) allows researchers to test whether information spreads following a social network. However, the explanatory power of different social networks has rarely been compared, and current models do not easily accommodate random effects (e.g. allowing for individuals within groups to correlate in their asocial solving rates). We tested whether the spread of two novel foraging skills through captive starling groups was affected by individual- and group-level random and fixed effects (i.e. sex, age, body condition, dominance rank and demonstrator status) and perching or foraging networks. We extended NBDA to include random effects and conducted model discrimination in a Bayesian context. We found that social learning increased the rate at which birds acquired the novel foraging task solutions by 6.67 times, and acquiring one of the two novel foraging task solutions facilitated the asocial acquisition of the other. Surprisingly, the spread of task solutions followed the perching rather than the foraging social network. Upon acquiring a task solution, foraging performance was facilitated by the presence of group mates. Our results highlight the importance of considering more than one social network when predicting the spread of information through animal groups. This article is part of a Special Issue entitled: Cognition in the wild

    The role of food transfers in wild golden lion tamarins (Leontopithecus rosalia) : support for the informational and nutritional hypothesis

    Get PDF
    Funding; The research was supported in part by a grant from the John Templeton Foundation (40128) and the European Research Council (232823), to KN Laland, and is in compliance with ASAB and ICMBio guidelines.Callitrichidae is a unique primate family not only in terms of the large number of food transfers to infants but also for the prevalence of transfers that are initiated by the adults. It has been hypothesized that, as well as provisioning infants, callitrichid food transfers might function to teach the receiver what food types to eat. If food provisioning has a teaching function, we would expect successful food transfers to be more likely with food types that are novel to the juveniles. We would also expect juveniles to learn about foods from those transfers. We introduced different types of food (some familiar, some novel) to wild groups of golden lion tamarins (Leontopithecus rosalia). While novel foods were not more successfully transferred than familiar food in the experiment, transfers were more successful (i.e., the receiver obtained food) when the donor had previous experience with that food. Moreover, we found evidence suggesting that food transfers influenced the future foraging choices of juveniles. Our findings are consistent with the first and third criteria of the functional definition of teaching, which requires that tutors (the adults) modify their behavior in the presence of a naïve individual (a juvenile), and that the naïve individual learns from the modified behavior of the demonstrator. Our findings are also consistent with the provisioning function of food transfer. Social learning seems to play an important role in the development of young tamarins’ foraging preferences.Publisher PDFPeer reviewe

    How New Caledonian crows solve novel foraging problems and what it means for cumulative culture.

    Get PDF
    New Caledonian crows make and use tools, and tool types vary over geographic landscapes. Social learning may explain the variation in tool design, but it is unknown to what degree social learning accounts for the maintenance of these designs. Indeed, little is known about the mechanisms these crows use to obtain information from others, despite the question's importance in understanding whether tool behavior is transmitted via social, genetic, or environmental means. For social transmission to account for tool-type variation, copying must utilize a mechanism that is action specific (e.g., pushing left vs. right) as well as context specific (e.g., pushing a particular object vs. any object). To determine whether crows can copy a demonstrator's actions as well as the contexts in which they occur, we conducted a diffusion experiment using a novel foraging task. We used a nontool task to eliminate any confounds introduced by individual differences in their prior tool experience. Two groups had demonstrators (trained in isolation on different options of a four-option task, including a two-action option) and one group did not. We found that crows socially learn about context: After observers see a demonstrator interact with the task, they are more likely to interact with the same parts of the task. In contrast, observers did not copy the demonstrator's specific actions. Our results suggest it is unlikely that observing tool-making behavior transmits tool types. We suggest it is possible that tool types are transmitted when crows copy the physical form of the tools they encounter.We are grateful to our funders: the SAGE Center for the Study of the Mind at the University of California Santa Barbara and the National Geographic Society/Waitt Grants Program (CJL), a Rutherford Discovery Fellowship from the Royal Society of New Zealand (AHT), the Marsden Fund (RG), and a BBSRC grant (WH; BB/I007997/1).This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.3758/s13420-015-0194-

    The spread of a novel behaviour in wild chimpanzees : new insights into the ape cultural mind

    Get PDF
    TP was funded by the Canadian Research Chair in Continental Ecosystem Ecology, and received computational support from the Theoretical Ecosystem Ecology group at UQAR. The research leading to these results has received funding from the People Programme (Marie Curie Actions) and from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013) REA grant agreement n°329197 awarded to TG, ERC grant agreement n° 283871 awarded to KZ. WH was funded by a BBSRC grant (BB/I007997/1).For years, the animal culture debate has been dominated by the puzzling absence of direct evidence for social transmission of behavioural innovations in the flagship species of animal culture, the common chimpanzee. Although social learning of novel behaviours has been documented in captivity, critics argue that these findings lack ecological validity and therefore may not be relevant for understanding the evolution of culture. For the wild, it is possible that group-specific behavioural differences emerge because group members respond individually to unspecified environmental differences, rather than learning from each other. In a recent paper, we used social network analyses in wild chimpanzees (Pan troglodytes schweinfurthii) to provide direct evidence for social transmission of a behavioural innovation, moss-sponging, to extract water from a tree hole. Here, we discuss the implications of our findings and how our new methodological approach could help future studies of social learning and culture in wild apes.Publisher PDFPeer reviewe

    The effect of auditory enrichment, rearing method and social environment on the behavior of zoo-housed psittacines (Aves: Psittaciformes); implications for welfare

    Get PDF
    The psychological and physiological effects of different genres of music are well documented in humans. These concepts have also been studied in kenneled dogs and some exotic animals, implying that animals may experience benefits similar to those of humans. This study tested the hypothesis that auditory enrichment changed the behavior of ten zoo-housed psittacines. All animals were exposed to six conditions of auditory stimulation; a ‘control’ (no auditory stimulation), and ‘experimental’ conditions, during which animals were presented with commercially-available CDs of classical music, pop music, natural rainforest sounds, parrot sounds and a talking radio. Each type of stimulation lasted two days, with a wash-out day between different stimulation conditions. We recorded key parameters relating to the birds’ social environment – whether they were group or single-housed and whether they had been hand or parent-reared. The parrots’ behaviour was recorded every minute for a 25 min period seven times a day using instantaneous sampling. The incidence of calm vocalisations and the level of preening changed with the different conditions. Birds exposed to rainforest and talking radio preened more than control birds. Birds exposed to several genres of auditory stimulation expressed fewer calm vocalisations than control birds. A further finding from this study was that hand-reared birds exhibited dramatically increased incidences of stereotypic behavior, more learned vocalisation and interacted less with enrichment than parent-reared and the implications of hand rearing for welfare are discussed. Similarly solo housed birds showed changes in behavior compared to group housed, such as less preening and more stereotypic behaviour. Hand reared, solo housed parrots express less normal behavior and maybe at risk of impaired welfare

    Multi-network-based diffusion analysis reveals vertical cultural transmission of sponge tool use within dolphin matrilines

    Full text link
    Behavioural differences among social groups can arise from differing ecological conditions, genetic predispositions and/or social learning. In the past, social learning has typically been inferred as responsible for the spread of behaviour by the exclusion of ecological and genetic factors. This ‘method of exclusion’ was used to infer that ‘sponging’, a foraging behaviour involving tool use in the bottlenose dolphin (Tursiops aduncus) population in Shark Bay, Western Australia, was socially transmitted. However, previous studies were limited in that they never fully accounted for alternative factors, and that social learning, ecology and genetics are not mutually exclusive in causing behavioural variation. Here, we quantified the importance of social learning on the diffusion of sponging, for the first time explicitly accounting for ecological and genetic factors, using a multi-network version of ‘network-based diffusion analysis'. Our results provide compelling support for previous findings that sponging is vertically socially transmitted from mother to (primarily female) offspring. This research illustrates the utility of social network analysis in elucidating the explanatory mechanisms behind the transmission of behaviour in wild animal populations
    • …
    corecore