949 research outputs found

    Dielectric Properties of Solid Solutions of BiFeO₃ with Pb(Ti, Zr)O₃ At High Temperature and High Frequency

    Get PDF
    Solid solutions of BiFeO3 with PbTiO3, PbTi0.5Zr0.5O3, and PbZrO3 were prepared. The crystallographic data on these solutions, which are basically perovskitic, are given. The dielectric constants of the materials were determined at a frequency of 0.53 GHz and at temperatures up to 800°C. Dielectric Curie points were found in solutions containing up to 90 mole % BiFeO3. These results leave little doubt that BiFeO3 is ferroelectric or antiferroelectric. The extrapolated Curie point for BiFeO3 is above 850°C. BiFeO3 appears more likely to be ferroelectric than antiferroelectric, but the distinction between the two classifications may not be sharp

    Detected changes in precipitation extremes at their native scales derived from in situ measurements

    Full text link
    The gridding of daily accumulated precipitation -- especially extremes -- from ground-based station observations is problematic due to the fractal nature of precipitation, and therefore estimates of long period return values and their changes based on such gridded daily data sets are generally underestimated. In this paper, we characterize high-resolution changes in observed extreme precipitation from 1950 to 2017 for the contiguous United States (CONUS) based on in situ measurements only. Our analysis utilizes spatial statistical methods that allow us to derive gridded estimates that do not smooth extreme daily measurements and are consistent with statistics from the original station data while increasing the resulting signal to noise ratio. Furthermore, we use a robust statistical technique to identify significant pointwise changes in the climatology of extreme precipitation while carefully controlling the rate of false positives. We present and discuss seasonal changes in the statistics of extreme precipitation: the largest and most spatially-coherent pointwise changes are in fall (SON), with approximately 33% of CONUS exhibiting significant changes (in an absolute sense). Other seasons display very few meaningful pointwise changes (in either a relative or absolute sense), illustrating the difficulty in detecting pointwise changes in extreme precipitation based on in situ measurements. While our main result involves seasonal changes, we also present and discuss annual changes in the statistics of extreme precipitation. In this paper we only seek to detect changes over time and leave attribution of the underlying causes of these changes for future work

    Abatement of circumneutral mine drainage by Co-treatment with secondary municipal wastewater

    Get PDF
    Acid mine drainage is a persistent and problematic source of water pollution. Co-treatment with municipal wastewater at existing wastewater treatment plants has several advantages; however, potential impacts on plant physicochemical and biological processes have not been well explored. The primary purpose of this bench-scale study was to examine the impact of co-treatment by combining a mild acid mine drainage at various ratios with municipal wastewater, followed by sludge settling and supernatant comparative analysis using a variety of effluent water quality parameters. These measurements were combined with carbonate system and adsorption isotherm modeling to elucidate the mechanisms underlying the experimental results. Acid mine drainage addition decreased municipal wastewater effluent PO43− concentrations below 0.2 mg/L with greater than 97% removal, demonstrating co-treatment as an alternative solution for municipal wastewater nutrient removal. Biochemical oxygen demand remained similar to controls with \u3c10% variation after co-treatment. Coagulation from metals in acid mine drainage was incomplete due to PO43− adsorption, confirmed by comparing experimental results with Langmuir isotherm behavior. Sweep flocculation was the dominating particle aggregation mechanism, and co-treatment led to improved particle clarification outcomes. Improved clarification led to up to 50% Fe removal. Final pH had little variation with all conditions having pH \u3e 6.0. Carbonate system modeling adequately explains pH effects, and can also be applied to varying acid mine drainage matrices. The impact of acid mine drainage addition on the municipal wastewater microbial community was also investigated which provided evidence of microbial adaptation. This study demonstrates post-aeration co-treatment enables mitigation of mild acid mine drainage without adversely affecting wastewater treatment plant processes. Reported results also frame required future studies to address extant questions prior to full-scale adaptation

    Potential Implications of Acid Mine Drainage and Wastewater Cotreatment on Solids Handling: A Review

    Get PDF
    Acid mine drainage (AMD) is a persistent and extensive source of water pollution and ecological degradation. Cotreating munici- pal wastewater (MWW) with AMD using existing infrastructure at conventional wastewater treatment plants (WWTPs) may serve as a potential option for AMD abatement. However, commonly elevated iron and aluminum concentrations and low pH of AMD could negatively impact various processes at a WWTP. The focus of this mini review was on determining how cotreating MWW with AMD could impact the solids handling processes at a WWTP. While no studies have explored the solids that could be generated during cotreatment in a WWTP, numerous articles separately discuss the solids generated during AMD or MWW treatment. Reviewing this literature revealed that iron and aluminum, common metals in AMD, are already present in MWW sludge and typically benefit most solids handling processes. The addition of AMD would elevate iron and aluminum concentration but would likely result in improved sludge dewatering, removal of odor-causing compounds during processing, and a decreased bioavailability of trace metals and water-soluble P in land applications. This review concludes that cotreating MWW with moderate to low volumes (\u3c50%) of AMD at WWTPs will have minimal impact on, and likely improve, solids handling processes
    corecore