150 research outputs found

    The role of tRNA in development

    Get PDF
    Experiments that suggest a developmental regulatory role for tRNA in translation (such cytokinins in tRNA, suppressor mutations, tRNA methyases, excessive number of isoaccepting species, and others) are briefly presented. Reports that link changes in the tRNA population of cells with developmental changes are collated. Our attempts to find changes in tRNA acceptor concentrations and in isoacceptor levels in the cotyledons of cotton seeds during their embryogenesis and germination are presented in detail. In this study we have found no pattern of change in the relative concentration of acceptors for each of the amino acids among the cytoplasmic tRNAs of the cotyledons during development. In fact the relative acceptor concentrations of the cotyledons are indistinguishable from those of cotton roots. We have observed a 7-fold increase per cell in the levels of chloroplastic tRNA that takes place during the first 5 days of germination. This increase does not require a light stimulation, and, further, chloroplastic tRNA is present in roots. The assumptions and genetic implications of a system of developmental regulation based in part on tRNA levels and code word frequency in mRNA are discussed.LEON S. DURE III AND WILLIAM C. MERRICK, Department of Biochemistry, University of Georgia, Athens, Georgia

    Ternatin and improved synthetic variants kill cancer cells by targeting the elongation factor-1A ternary complex.

    Get PDF
    Cyclic peptide natural products have evolved to exploit diverse protein targets, many of which control essential cellular processes. Inspired by a series of cyclic peptides with partially elucidated structures, we designed synthetic variants of ternatin, a cytotoxic and anti-adipogenic natural product whose molecular mode of action was unknown. The new ternatin variants are cytotoxic toward cancer cells, with up to 500-fold greater potency than ternatin itself. Using a ternatin photo-affinity probe, we identify the translation elongation factor-1A ternary complex (eEF1A·GTP·aminoacyl-tRNA) as a specific target and demonstrate competitive binding by the unrelated natural products, didemnin and cytotrienin. Mutations in domain III of eEF1A prevent ternatin binding and confer resistance to its cytotoxic effects, implicating the adjacent hydrophobic surface as a functional hot spot for eEF1A modulation. We conclude that the eukaryotic elongation factor-1A and its ternary complex with GTP and aminoacyl-tRNA are common targets for the evolution of cytotoxic natural products

    Rocaglates induce gain-of-function alterations to eIF4A and eIF4F

    Get PDF
    Rocaglates are a diverse family of biologically active molecules that have gained tremendous interest in recent years due to their promising activities in pre-clinical cancer studies. As a result, this family of compounds has been significantly expanded through the development of efficient synthetic schemes. However, it is unknown whether all of the members of the rocaglate family act through similar mechanisms of action. Here, we present a comprehensive study comparing the biological activities of >200 rocaglates to better understand how the presence of different chemical entities influences their biological activities. Through this, we find that most rocaglates preferentially repress the translation of mRNAs containing purine-rich 5' leaders, but certain rocaglates lack this bias in translation repression. We also uncover an aspect of rocaglate mechanism of action in which the pool of translationally active eIF4F is diminished due to the sequestration of the complex onto RNA.P50 GM067041 - NIGMS NIH HHS; R24 GM111625 - NIGMS NIH HHS; R35 GM118173 - NIGMS NIH HHSPublished versio

    Rapid kinetics of iron responsive element (IRE) RNA/iron regulatory protein 1 and IRE-RNA/eIF4F complexes respond differently to metal ions

    Full text link
    Metal ion binding was previously shown to destabilize IRE-RNA/IRP1 equilibria and enhanced IRE-RNA/eIF4F equilibria. In order to understand the relative importance of kinetics and stability, we now report rapid rates of protein/RNA complex assembly and dissociation for two IRE-RNAs with IRP1, and quantitatively different metal ion response kinetics that coincide with the different iron responses in vivo. kon, for FRT IRE-RNA binding to IRP1 was eight times faster than ACO2 IRE-RNA. Mn2+ decreased kon and increased koff for IRP1 binding to both FRT and ACO2 IRE-RNA, with a larger effect for FRT IRE-RNA. In order to further understand IRE-mRNA regulation in terms of kinetics and stability, eIF4F kinetics with FRT IRE-RNA were determined. kon for eIF4F binding to FRT IRE-RNA in the absence of metal ions was 5-times slower than the IRP1 binding to FRT IRE-RNA. Mn2+ increased the association rate for eIF4F binding to FRT IRE-RNA, so that at 50 µM Mn2+ eIF4F bound more than 3-times faster than IRP1. IRP1/IRE-RNA complex has a much shorter life-time than the eIF4F/IRE-RNA complex, which suggests that both rate of assembly and stability of the complexes are important, and that allows this regulatory system to respond rapidly to change in cellular iron

    Differential contribution of the m7G-cap to the 5′ end-dependent translation initiation of mammalian mRNAs

    Get PDF
    Many mammalian mRNAs possess long 5′ UTRs with numerous stem-loop structures. For some of them, the presence of Internal Ribosome Entry Sites (IRESes) was suggested to explain their significant activity, especially when cap-dependent translation is compromised. To test this hypothesis, we have compared the translation initiation efficiencies of some cellular 5′ UTRs reported to have IRES-activity with those lacking IRES-elements in RNA-transfected cells and cell-free systems. Unlike viral IRESes, the tested 5′ UTRs with so-called ‘cellular IRESes’ demonstrate only background activities when placed in the intercistronic position of dicistronic RNAs. In contrast, they are very active in the monocistronic context and the cap is indispensable for their activities. Surprisingly, in cultured cells or cytoplasmic extracts both the level of stimulation with the cap and the overall translation activity do not correlate with the cumulative energy of the secondary structure of the tested 5′ UTRs. The cap positive effect is still observed under profound inhibition of translation with eIF4E-BP1 but its magnitude varies for individual 5′ UTRs irrespective of the cumulative energy of their secondary structures. Thus, it is not mandatory to invoke the IRES hypothesis, at least for some mRNAs, to explain their preferential translation when eIF4E is partially inactivated

    The ethics of ‘Trials within Cohorts’ (TwiCs): 2nd international symposium - London, UK. 7-8 November 2016

    Get PDF
    On 7-8 th November 2016, 60 people with an interest in the ‘ Trials within Cohorts ’ (TwiCs) approach for randomised controlled trial design met in London. The purpose of this 2 nd TwiCs international symposium was to share perspectives and experiences on ethical aspects of the TwiCs design, discuss how TwiCs relate to the current ethical frame- work, provide a forum in which to discuss and debate ethical issues and identify future directions for conceptual and empirical research. The symposium was supported by the Wellcome Trust and the NIHR CLAHRC Yorkshire and Humber and organised by members of the TwiCs network led by Clare Relton and attended by people from the UK, the Netherlands, Norway, Canada and USA. The two-day sympo- sium enabled an international group to meet and share experiences of the TwiCs design (also known as the ‘ cohort multiple RCT design ’ ), and to discuss plans for future research. Over the two days, invited plenary talks were interspersed by discussions, posters and mini pre- sentations from bioethicists, triallists and health research regulators. Key findings of the symposium were: (1) It is possible to make a compelling case to ethics committees that TwiCs designs are ap- propriate and ethical; (2) The importance of wider considerations around the ethics of inefficient trial designs; and (3) some questions about the ethical requirements for content and timing of informed consent for a study using the TwiCs design need to be decided on a case-by-case basis
    corecore