70 research outputs found

    A Comparison of Assays for Accurate Copy Number Measurement of the Low-Affinity Fc Gamma Receptor Genes FCGR3A and FCGR3B

    Get PDF
    The FCGR3 locus encoding the low affinity activating receptor FcγRIII, plays a vital role in immunity triggered by cellular effector and regulatory functions. Copy number of the genes FCGR3A and FCGR3B has previously been reported to affect susceptibility to several autoimmune diseases and chronic inflammatory conditions. However, such genetic association studies often yield inconsistent results; hence require assays that are robust with low error rate. We investigated the accuracy and efficiency in estimating FCGR3 CNV by comparing Sequenom MassARRAY and paralogue ratio test-restriction enzyme digest variant ratio (RT-REDVR). In addition, since many genetic association studies of FCGR3B CNV were carried out using real-time quantitative PCR, we have also included the evaluation of that method’s performance in estimating the multi-allelic CNV of FCGR3B. The qPCR assay exhibited a considerably broader distribution of signal intensity, potentially introducing error in estimation of copy number and higher false positive rates. Both Sequenom and PRT-REDVR showed lesser systematic bias, but Sequenom skewed towards copy number normal (CN = 2). The discrepancy between Sequenom and PRT-REDVR might be attributed either to batch effects noise in individual measurements. Our study suggests that PRT-REDVR is more robust and accurate in genotyping the CNV of FCGR3, but highlights the needs of multiple independent assays for extensive validation when performing a genetic association study with multi-allelic CNVs

    Rituximab for maintenance of remission in ANCA-associated vasculitis: expert consensus guidelines—Executive summary

    Get PDF
    [This is the executive summary of Rituximab for maintenance of remission in ANCA-associated vasculitis: expert consensus guidelines: full guideline, doi: 10.1093/rheumatology/kez640

    A CD8+ T cell transcription signature predicts prognosis in autoimmune disease.

    Get PDF
    Autoimmune diseases are common and debilitating, but their severe manifestations could be reduced if biomarkers were available to allow individual tailoring of potentially toxic immunosuppressive therapy. Gene expression-based biomarkers facilitating such tailoring of chemotherapy in cancer, but not autoimmunity, have been identified and translated into clinical practice. We show that transcriptional profiling of purified CD8(+) T cells, which avoids the confounding influences of unseparated cells, identifies two distinct subject subgroups predicting long-term prognosis in two autoimmune diseases, antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), a chronic, severe disease characterized by inflammation of medium-sized and small blood vessels, and systemic lupus erythematosus (SLE), characterized by autoantibodies, immune complex deposition and diverse clinical manifestations ranging from glomerulonephritis to neurological dysfunction. We show that the subset of genes defining the poor prognostic group is enriched for genes involved in the interleukin-7 receptor (IL-7R) pathway and T cell receptor (TCR) signaling and those expressed by memory T cells. Furthermore, the poor prognostic group is associated with an expanded CD8(+) T cell memory population. These subgroups, which are also found in the normal population and can be identified by measuring expression of only three genes, raise the prospect of individualized therapy and suggest new potential therapeutic targets in autoimmunity

    Fcγ Receptors in Solid Organ Transplantation.

    Get PDF
    In the current era, one of the major factors limiting graft survival is chronic antibody-mediated rejection (ABMR), whilst patient survival is impacted by the effects of immunosuppression on susceptibility to infection, malignancy and atherosclerosis. IgG antibodies play a role in all of these processes, and many of their cellular effects are mediated by Fc gamma receptors (FcγRs). These surface receptors are expressed by most immune cells, including B cells, natural killer cells, dendritic cells and macrophages. Genetic variation in FCGR genes is likely to affect susceptibility to ABMR and to modulate the physiological functions of IgG. In this review, we discuss the potential role played by FcγRs in determining outcomes in solid organ transplantation, and how genetic polymorphisms in these receptors may contribute to variations in transplant outcome.MRC is supported by the NIHR Cambridge BRC, the NIHR Blood and Transplant Research Unit (Cambridge) and by a Medical Research Council New Investigator Grant (MR/N024907/1).This is the final version of the article. It first appeared from Springer via https://doi.org/10.1007/s40472-016-0116-

    Genome-Wide Analysis of Copy Number Variation in Type 1 Diabetes

    Get PDF
    Type 1 diabetes (T1D) tends to cluster in families, suggesting there may be a genetic component predisposing to disease. However, a recent large-scale genome-wide association study concluded that identified genetic factors, single nucleotide polymorphisms, do not account for overall familiality. Another class of genetic variation is the amplification or deletion of >1 kilobase segments of the genome, also termed copy number variations (CNVs). We performed genome-wide CNV analysis on a cohort of 20 unrelated adults with T1D and a control (Ctrl) cohort of 20 subjects using the Affymetrix SNP Array 6.0 in combination with the Birdsuite copy number calling software. We identified 39 CNVs as enriched or depleted in T1D versus Ctrl. Additionally, we performed CNV analysis in a group of 10 monozygotic twin pairs discordant for T1D. Eleven of these 39 CNVs were also respectively enriched or depleted in the Twin cohort, suggesting that these variants may be involved in the development of islet autoimmunity, as the presently unaffected twin is at high risk for developing islet autoimmunity and T1D in his or her lifetime. These CNVs include a deletion on chromosome 6p21, near an HLA-DQ allele. CNVs were found that were both enriched or depleted in patients with or at high risk for developing T1D. These regions may represent genetic variants contributing to development of islet autoimmunity in T1D

    The quest for genetic risk factors for Crohn's disease in the post-GWAS era

    Get PDF
    Multiple genome-wide association studies (GWASs) and two large scale meta-analyses have been performed for Crohn's disease and have identified 71 susceptibility loci. These findings have contributed greatly to our current understanding of the disease pathogenesis. Yet, these loci only explain approximately 23% of the disease heritability. One of the future challenges in this post-GWAS era is to identify potential sources of the remaining heritability. Such sources may include common variants with limited effect size, rare variants with higher effect sizes, structural variations, or even more complicated mechanisms such as epistatic, gene-environment and epigenetic interactions. Here, we outline potential sources of this hidden heritability, focusing on Crohn's disease and the currently available data. We also discuss future strategies to determine more about the heritability; these strategies include expanding current GWAS, fine-mapping, whole genome sequencing or exome sequencing, and using family-based approaches. Despite the current limitations, such strategies may help to transfer research achievements into clinical practice and guide the improvement of preventive and therapeutic measures

    The immunopathology of ANCA-associated vasculitis.

    Get PDF
    The small-vessel vasculitides are a group of disorders characterised by variable patterns of small blood vessel inflammation producing a markedly heterogeneous clinical phenotype. While any vessel in any organ may be involved, distinct but often overlapping sets of clinical features have allowed the description of three subtypes associated with the presence of circulating anti-neutrophil cytoplasmic antibodies (ANCA), namely granulomatosis with polyangiitis (GPA, formerly known as Wegener's Granulomatosis), microscopic polyangiitis (MPA) and eosinophilic granulomatosis with polyangiitis (eGPA, formerly known as Churg-Strauss syndrome). Together, these conditions are called the ANCA-associated vasculitidies (AAV). Both formal nomenclature and classification criteria for the syndromes have changed repeatedly since their description over 100 years ago and may conceivably do so again following recent reports showing distinct genetic associations of patients with detectable ANCA of distinct specificities. ANCA are not only useful in classifying the syndromes but substantial evidence implicates them in driving disease pathogenesis although the mechanism by which they develop and tolerance is broken remains controversial. Advances in our understanding of the pathogenesis of the syndromes have been accompanied by some progress in treatment, although much remains to be done to improve the chronic morbidity associated with the immunosuppression required for disease control
    corecore