Perinatal HIV-1 transmission: Fc gamma receptor variability associates with maternal infectiousness and infant susceptibility

Ria Lassaunière ${ }^{1,2}$, Alfred Musekiwa ${ }^{3}$, Glenda E. Gray ${ }^{4}$, Louise Kuhn ${ }^{5,6}$ and Caroline T. Tiemessen ${ }^{1,2^{*}}$

Abstract

Background: Accumulating data suggest that immune effector functions mediated through the Fc portion of HIV-1-specific immunoglobulin G (IgG) are a key component of HIV-1 protective immunity, affecting both disease progression and HIV-1 acquisition. Through studying Fc gamma receptor (FcyR) variants known to alter lgG Fc-mediated immune responses, we indirectly assessed the role of FcyR-mediated effector functions in modulating perinatal HIV-1 transmission risk. In this study, genotypic data from $79 \mathrm{HIV}-1$ infected mothers and $78 \mathrm{HIV}-1$ infected infants (transmitting cases) were compared to $234 \mathrm{HIV}-1$ infected mothers and $235 \mathrm{HIV}-1$ exposed-uninfected infants (non-transmitting controls). Associations, unadjusted and adjusted for multiple comparisons, were assessed for overall transmission and according to mode of transmission—intrapartum $(n=31)$, in utero $(n=20)$, in utero-enriched ($n=48$). Results: The maternal FcyRIIla-158V allele that confers enhanced antibody binding affinity and antibody-dependent cellular cytotoxicity capacity significantly associated with reduced HIV-1 transmission [odds ratio (OR) 0.47, 95% confidence interval (CI) 0.28-0.79, $\mathrm{P}=0.004 ; \mathrm{P}_{\text {Bonf }}>0.05$]. In particular, the FcyRIlla-158V allele was underrepresented in the in utero transmitting group $\left(P=0.048 ; P_{\text {Bonf }}>0.05\right)$ and in utero-enriched transmitting groups ($P=0.0001$; $P_{\text {Bonf }}<0.01$). In both mother and infant, possession of an FcyRlllb-HNA1b allotype that reduces neutrophil-mediated effector functions associated with increased transmission (OR 1.87, $95 \% \mathrm{Cl} 1.08-3.21, \mathrm{P}=0.025 ; \mathrm{P}_{\text {Bonf }}>0.05$) and acquisition (OR 1.91, $95 \% \mathrm{Cl} 1.11-3.30, \mathrm{P}=0.020 ; \mathrm{P}_{\text {Bonf }}>0.05$), respectively. Conversely, the infant FcyRIIllb-HNA1a|1a genotype was significantly protective of perinatal HIV-1 acquisition (OR $0.42,95 \% \mathrm{Cl} 0.18-0.96, \mathrm{P}=0.040 ; \mathrm{P}_{\text {Bonf }}>0.05$). Conclusions: The findings of this study suggest a potential role for FcyR-mediated effector functions in perinatal HIV-1 transmission. However, future studies are required to validate the findings of this study, in particular associations that did not retain significance after adjustment for multiple comparisons.

Keywords: HIV-1, Vertical infectious disease transmission, Risk factors, IgG receptors, Alleles, Antibody-dependent cell cytotoxicity, Phagocytosis

Background

Beyond neutralization, immunoglobulin G (IgG) has the capacity to recruit potent effector functions of the innate immune system through engagement with Fc gamma receptors ($\mathrm{Fc} \gamma \mathrm{Rs}$), which are widely expressed throughout the haematopoietic system. Directly or indirectly, FcyRs mediate antiviral processes that include

[^0]antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), respiratory burst, antigen display, antibody production, cell activation, and release of inflammatory mediators [1].
$\mathrm{Fc} \gamma \mathrm{R}$-mediated effector functions are increasingly recognized as a component of HIV-1 protective immunity [2]. However, the role of these effector functions in modulating perinatal HIV-1 transmission risk is currently undefined. Given the contribution of $\mathrm{Fc} \gamma \mathrm{R}$-mediated effector functions to eliminating cell-free and cell-associated virus, these processes may modify the infectiousness
of an HIV-1 infected mother. In addition, transplacental transferred anti-HIV-1 IgG may recruit innate immune effector functions in the foetus/infant through engaging Fc γ Rs expressed on foetal/infant immune cells, and in this manner modify the infant's susceptibility to HIV-1 acquisition.
In vivo, $\mathrm{Fc} \gamma \mathrm{R}$-mediated effector functions are governed by a balance between activating and inhibitory Fc γ Rs [3]. This balance is perturbed by functionally significant genotypic variants that modulate cellular activation and ultimately effector function capability. These include gene duplication/deletion that affects $\mathrm{Fc} \gamma \mathrm{R}$ surface density [4, 5] and amino acid changes that alter the receptor's binding affinity for antibody subclasses (FcүRIIa-H131R and Fc γ RIIIa-F158V) [6, 7], subcellular localization (Fc γ RIIbI232T) [8], glycosylation patterns (FcyRIIIb-HNA1a|b|c) [9, 10], and the expression of a functional molecule (FcyRIIc-X57Q and c.798+1A>G) [11, 12].
Using these variants as a proxy for functional capability, this study indirectly assessed the potential role of $\mathrm{Fc} \gamma \mathrm{R}$ mediated effector functions in mother-to-child transmission of HIV-1. Due to the exploratory nature of the study, associations are reported unadjusted for multiple comparisons. However, adjusted associations were also considered. Our findings highlight a potential role for the FcyRIIIa-F158V variant in modulating maternal infectiousness, while in both mother and infant the FcyRIIIbHNA1a|b|c variant associated with HIV-1 transmission.

Results

Cohort

A nested case-control study was undertaken to investigate FCGR variability in HIV-1 infected mothers and their infants recruited as part of four perinatal cohorts at two hospitals in Johannesburg, South Africa [13]. Overall, the four cohorts comprised 849 HIV-1 infected mothers and their infants, of whom 83 (10 \%) acquired HIV-1 perinatally. In the present study, FCGR genotypic data from 79 HIV-1 infected mothers and 78 HIV-1 infected infants (transmitting cases) were compared with 234 HIV-1 infected mothers and 235 uninfected infants (nontransmitting controls). Mode of transmission was defined according to the presence/absence of detectable HIV-1 DNA in the infant at birth and 6 weeks of age. Infants that tested HIV-1 positive at 6 weeks of age, but who were negative at birth, were considered to be infected intrapartum (during labour and delivery), while infants that tested HIV-1 positive at birth were considered infected in utero. Infants that were HIV-1 positive at 6 weeks, but had no birth sample, were categorized as 'undetermined'. Since 25/28 (89.2 \%) mothers in the 'undetermined' category received drug interventions known to reduce intrapartum transmission [14-16], it was concluded that the
majority of infants in this group were likely infected in utero and was thus combined with the in utero group to form an in utero-enriched group.

Transmitting mothers had significantly higher HIV-1 plasma viral loads and lower $\mathrm{CD} 4^{+} \mathrm{T}$ cell counts compared to non-transmitting mothers (Table 1). In addition, infants infected in utero had a significantly lower mean birth weight compared to exposed-uninfected infants. Maternal age, parity, mode of delivery, gestation, child sex, and reported breast feeding did not differ significantly between transmitting mothers (total, intrapartum or in utero) and non-transmitting mothers.

Variants not detected in the study cohort

The Fc γ RIIb 2B. 4 promoter haplotype (c.-386C/c.-120A) and expression of functional $\mathrm{Fc} \gamma$ RIIc are rare to absent in Black South African individuals [17]. Accordingly, in the present cohort of Black South African mothers and infants, none possessed the FcyRIIb 2B.4 promoter haplotype. Furthermore, despite 84/313 (25.3 \%) mothers and 81/313 (25.9 \%) infants bearing an FcyRIIc-Q57 allele, only one non-transmitting mother expressed functional Fc γ RIIc as predicted by the FCGR2C c.798+1A>G splice-site variant [12].

FCGR copy number variability

The frequency of FCGR3A gene copy number variability (CNV) was low, occurring in 17/313 (5.4 \%) mothers and $14 / 313$ (4.5%) infants (Fig. 1), and did not associate with perinatal HIV-1 transmission ($\mathrm{P}>0.05$ for all comparisons; Additional file 1: Table S1). FCGR3B gene CNV was observed more frequently in 92/313 (29.4 \%) mothers and 100/313 (31.9 \%) infants (Fig. 1). The overall distribution of $F C G R 3 B$ gene copy number was significantly different between exposed-uninfected infants and intrapartum infected infants ($\mathrm{P}=0.029$), with the intrapartum infected group having fewer FCGR3B gene duplications and no gene deletions (Additional file 1: Table S1). Maternal FCGR3B gene CNV did not associate with HIV-1 transmission ($\mathrm{P}>0.05$ for all comparisons; Additional file 1: Table S1).

FcyR variants and infectiousness of the transmitter/mother

To determine if FcyR variants were associated with the infectiousness of the mother, HIV-1 transmission was assessed according to maternal genotypes and allele carriage in a univariate and multivariate model (Table 2, 3, respectively). Overall, the maternal FcyRIIIa-F158V variant significantly associated with HIV-1 transmission ($\mathrm{P}=0.017$), while a trend was observed for the FcyRIIIbHNA1a|b|c variant ($\mathrm{P}=0.058$).
Carriage of at least one maternal FcyRIIIa-158V allele (confers enhanced antibody binding affinity) associated

Table 1 Demographic and clinical characteristics of mothers and infants

Maternal viral load ($\log _{10}$ copies/ml)	Non-transmitting$(N=234)^{a}$		Total transmitting$(N=79)$		Intrapartum transmitting ($N=31$)		In utero transmitting$(N=20)^{\mathrm{b}}$		In utero-enriched transmitting ($N=48$)	
	$\mathrm{N}^{\text {c }}$		$\mathrm{N}^{\text {c }}$		$\mathrm{N}^{\mathbf{c}}$		$\mathrm{N}^{\text {c }}$		$\mathrm{N}^{\text {c }}$	
Median (IQR)	218	4.08 (3.20-4.67)	71	4.77 (3.77-5.34)***	27	4.77 (3.77-5.26)**	18	$4.89(4.20-5.47)^{* * *}$	44	$4.81(3.78-5.44)^{* * *}$
Maternal CD4 ${ }^{+}$T cell count										
Mean (std)	217	520 (275)	70	418 (222)**	27	402 (179)*	15	409 (276)	43	428 (247)*
Maternal age (years)										
Mean (std)	232	26.9 (5.1)	78	27.6 (5.2)	30	26.7 (5.0)	20	27.5 (5.5)	48	28.2 (5.2)
Parity										
Mean (std)	231	2.1 (1.0)	77	2.3 (1.2)	29	2.3 (1.2)	20	2.2 (1.2)	48	2.3 (1.2)
Mode of delivery [N (\%)]										
Caesarean section	232	17 (7.3)	77	10 (13.0)	29	2 (6.9)	20	3 (15.0)	48	8 (16.7)
Gestation [$N(\%)$]										
Preterm <37 weeks	215	27 (12.6)	70	12 (17.1)	25	7 (28.0)	19	4 (21.1)	45	5 (11.1)
Child sex [$N(\%)$]										
Male	234	101 (43.1)	79	39 (49.4)	31	18 (58.0)	20	8 (40.0)	48	21 (43.8)
Birth weight (g)										
Mean (std)	231	2980 (453)	78	2889 (442)	30	2943 (400)	20	2784 (320)*	48	2856 (468)
Breast fed N (\%)										
>3 days	233	34 (14.6)	78	10 (12.8)	30	5 (16.7)	20	2 (10.0)	48	5 (10.4)
Antiretrovirals										
Nevirapine	234	114 (48.7)	79	47 (59.5)	31	11 (35.5)	20	13 (65.0)	48	36 (75.0)**
Triple drug therapy	234	6 (2.6)	79	2 (2.5)	31	0	20	0	48	2 (4.2)
Other drugs ${ }^{\text {d }}$	234	11 (4.7)	79	6 (7.6)	31	3 (9.7)	20	1 (5.0)	48	3 (6.3)

For comparisons with non-transmitting mothers: ${ }^{*} \mathrm{P}<0.05$; ${ }^{* *} \mathrm{P}<0.01$; ${ }^{* * *} \mathrm{P}<0.001$
${ }^{\text {a }}$ Five unmatched mothers
${ }^{\text {b }}$ One unmatched mother
${ }^{\text {c }}$ Number of participants for whom data were available
${ }^{d}$ Different regimens of zidovudine (AZT) and lamivudine (3TC)
with a reduced odds of perinatal HIV-1 transmission (OR 0.47, 95% CI $0.28-0.79, \mathrm{P}=0.004$). When analysed according to mode of transmission, a similar association was observed for the in utero transmitting group (OR 0.39, 95% CI $0.16-0.99, \mathrm{P}=0.048$) and in uteroenriched transmitting group (OR 0.29, 95% CI 0.15-0.55, $\mathrm{P}=0.0001$), but not for the intrapartum transmitting group (OR 1.01, 95 \% CI $0.45-2.25, \mathrm{P}=0.980$). These associations remained significant for the total transmitting group and in utero-enriched group in the multivariate analysis ($\mathrm{P}=0.008$ and $\mathrm{P}=0.001$, respectively) and for the in utero-enriched group after adjustment for multiple comparisons (univariate: $\mathrm{P}_{\text {Bonf }}=0.004$; multivariate: $\mathrm{P}_{\text {Bonf }}=0.042$).
Possession of an FcyRIIIb-HNA1b allele (modulates neutrophil function) significantly associated with an increased odds of HIV-1 transmission in both the univariate analysis (OR 1.87, 95% CI 1.08-3.21, $\mathrm{P}=0.025$) and multivariate analysis ($\mathrm{P}=0.014$). A similar association was observed for the FcyRIIIb-HNA1b|1c genotype in
the in utero transmitting group (OR 5.45, 95 \% CI 1.2124.66, $\mathrm{P}=0.028$) and in utero-enriched transmitting group (OR 2.45, 95 \% CI 1.01-5.96, P = 0.047). However, these associations were not significant in the multivariate analysis.

The FcyRIIa-H131R and FcyRIIb-I232T variants did not associate with perinatal HIV-1 transmission in the univariate analysis. However, after adjustment for confounding variables, the FcyRIIa-131RR genotype (receptor has reduced affinity for IgG2) and FcyRIIb-232TT genotype (confers reduced inhibitory capacity) associated with increased odds of HIV-1 transmission (Table 3).

FcyR variants and susceptibility of the recipient/infant

In addition to an association observed in the mother, the infant FcyRIIIb-HNA1a|b|c variant also associated with susceptibility to HIV-1 acquisition in the infant ($\mathrm{P}=0.046$). In particular, carriage of least one FcyRIIIbHNA1b allotype significantly associated with increased susceptibility to HIV-1 acquisition in the univariate

Fig. 1 The distribution of FCGR3A and FCGR3B gene copy number in HIV-1 infected mothers (\mathbf{a}, \mathbf{b}, respectively) and their infants (\mathbf{c}, \mathbf{d}, respectively)
analysis (OR 1.91, 95 \% CI 1.11-3.30, $\mathrm{P}=0.020$; Table 4) and multivariate analysis ($\mathrm{P}=0.019$; Table 5). Conversely, homozygosity for the Fc γ RIIIb-HNA1a allotype associated with reduced odds of HIV-1 acquisition in the total infected group (OR 0.42, 95 \% CI 0.18-0.96, $\mathrm{P}=0.040$) and intrapartum infected group (OR 0.19, 95% CI $0.04-0.89, \mathrm{P}=0.035$). The protective effect of FcyRIIIb-HNA1a homozygosity was also observed when compared to other allotype combinations, however not all comparisons remained significant in the multivariate analysis (Additional file 2: Table S2).

Linkage disequilibrium at the low affinity FCGR gene locus
Linkage disequilibrium (LD) between the different $\mathrm{Fc} \gamma \mathrm{R}$ variants could potentially modulate associations observed for the individual Fc γ Rs. Given the strong association of the maternal FcyRIIIa-F158V variant with perinatal HIV-1 transmission, we determined LD in the study cohort (Fig. 2) and adjusted for its possible confounding effect on the associations observed for FcyRIIIbHNA1a|b|c, FcyRIIa-H131R and FcyRIIb-I232T in the multivariate analysis (Table 6).
To determine LD for the FcyRIIIb-HNA1a|b|c allotypes, we used, as a tag-variant, one of four amino acid changes that differentiate HNA1a from HNA1b and

HNA1c (p. $\mathrm{N}^{\mathrm{a}} 65 \mathrm{~S}^{\mathrm{bc}}$, rs448740) as well as the variant that differentiates HNA1c from HNA1a and HNA1b (p. A ${ }^{\text {ab }} 78 \mathrm{D}^{\mathrm{c}}$, rs5030738). The maternal Fc γ RIIIb- $\mathrm{N}^{\mathrm{a}} 65 \mathrm{~S}^{\mathrm{bc}}$ variant was not in LD with FcүRIIIa-F158V ($\mathrm{P}=0.057$, $\mathrm{D}^{\prime}=0.189, \mathrm{r}^{2}=0.020$), while the $\mathrm{p} . \mathrm{A}^{\mathrm{ab}} 78 \mathrm{D}^{\mathrm{c}}$ variant was in moderate LD with FcyRIIIa-F158V ($\mathrm{P}=0.024$, $\mathrm{D}^{\prime}=0.471, \mathrm{r}^{2}=0.029$) with the Fc γ RIIIa-158V allele overrepresented in individuals bearing an FcyRIIIb78 A allele (HNA1c individuals) compared to FcyRIIIb78 DD individuals (59 vs. 20%). Following adjustment for $\mathrm{Fc} \gamma$ RIIIa-F158V in the multivariate analysis, the associations previously observed for the FcyRIIIb-HNA1b allotype strengthened for both the total and in uteroenriched transmitting groups (Table 6). Similarly, significance was retained in the infants with associations strengthening for the Fc γ RIIIb-HNA1a $+|1 b+| 1 \mathrm{c}+$ genotype in the in utero-enriched infected group and carriage of an HNA1b allotype in the total infected and in uteroenriched infected groups (Table 6). Overall, this suggests that the observed associations between the FcyRIIIbHNA1a|b|c variant and perinatal HIV-1 transmission are not only independent of FcyRIIIa-F158V, but also potentially negatively confounded by FcyRIIIa-F158V.
Both maternal FcyRIIa-H131R and FcyRIIb-I232T was in moderate LD with FcyRIIIa-F158V (P < 0.0001,

Table 2 FcyR genotypes and allele carriage in HIV-1 non-transmitting and transmitting mothers

	Non-transmittingN (\%)		Total transmitting				Intrapartum transmitting			
			N (\%)	OR (95 \% CI)	P value	$\mathrm{P}_{\text {Bonf }}$	N (\%)	OR (95 \% CI)	P value	$\mathrm{P}_{\text {Bonf }}$
FCyRIIa (rs1801274)	Overall association				$P=0.379$	ns			$P=0.688$	ns
Genotype										
131HH (ref)	60 (25.6)		15 (19.0)	1			6 (19.4)	1		
131HR	106 (45.3)		36 (45.6)	1.36 (0.69-2.68)	$P=0.378$	ns	14 (45.2)	1.32 (0.48-3.62)	$P=0.558$	ns
131RR	68 (29.1)		28 (35.4)	1.65 (0.80-3.37)	$P=0.172$	ns	11 (35.5)	1.62 (0.56-4.64)	$P=0.371$	ns
Allele carriage										
$\geq 1131 \mathrm{H}$ allele	166 (70.9)		51 (64.6)	0.75 (0.43-1.28)	$P=0.288$	ns	20 (64.5)	0.74 (0.34-1.64)	$P=0.464$	ns
$\geq 1131 \mathrm{R}$ allele	174 (74.4)		64 (81.0)	1.47 (0.78-2.77)	$P=0.233$	ns	25 (80.6)	1.44 (0.56-3.67)	$P=0.449$	ns
FCyRIIb (rs 1050501)	Overall association				$P=0.194$	ns			$P=0.397$	ns
Genotype										
23211 (ref)	113 (48.3)		32 (40.5)	1			12 (38.7)	1		
$2321 T$	103 (44.0)		36 (45.6)	1.23 (0.71-2.13)	$P=0.450$	ns	15 (48.4)	1.37 (0.61-3.07)	$P=0.442$	ns
232TT	18 (7.7)		11 (13.9)	2.16 (0.93-5.03)	$P=0.075$	ns	4 (12.9)	2.09 (0.61-7.20)	$P=0.242$	ns
Allele carriage										
≥ 12321 allele	216 (92.3)		68 (86.3)	0.52 (0.23-1.14)	$P=0.103$	ns	27 (87.1)	0.56 (0.18-1.79)	$P=0.239$	ns
≥ 1232 T allele	121 (51.7)		47 (59.5)	1.37 (0.82-2.30)	$P=0.231$	ns	19 (61.3)	1.48 (0.69-3.18)	$P=0.317$	ns
FcyRIIII (rs396991)	Overall association				$P=0.017$	ns			$P=0.380$	ns
Genotype										
158F/FF/FF (ref)	76 (32.5)		40 (50.6)	1			10 (32.3)	1		
158FV/FFV/FVV	121 (51.7)		31 (39.2)	0.49 (0.28-0.84)	$P=0.010$	ns	19 (61.3)	1.19 (0.53-2.70)	$P=0.672$	ns
158V/VV	36 (15.4)		8 (10.1)	0.41 (0.17-0.97)	$P=0.041$	ns	2 (6.5)	0.41 (0.09-1.97)	$P=0.266$	ns
Allele carriage										
$\geq 1158 \mathrm{~F}$ allele	197 (84.2)		71 (89.9)	1.67 (0.74-3.75)	$P=0.217$	ns	29 (93.5)	2.72 (0.62-11.91)) $P=0.183$	ns
$\geq 1158 \mathrm{~V}$ allele	157 (67.1)		39 (49.4)	0.47(0.28-0.79)	$P=0.004$	ns	21 (67.7)	1.01 (0.45-2.25)	$P=0.980$	ns
FcyRIIIb	Overall association				$P=0.058$	ns			$P=0.647$	ns
Genotype										
HNA1a+/1b-/1c-	51 (21.8)		13 (16.5)	0.68 (0.32-1.44)	$P=0.315$	ns	4 (12.9)	0.51 (0.15-1.70)	$P=0.276$	ns
HNA1a-/1b+/1c-	23 (9.8)		7 (8.9)	0.81 (0.31-2.11)	$P=0.668$	ns	4 (12.9)	1.14 (0.33-3.92)	$\mathrm{P}=0.837$	ns
HNA1a-/1b-/1c+	13 (5.6)		0 (0)	-			0 (0)	-		
HNA1a+/1b+/1c- (ref)	f) 72 (30.8)		27 (34.2)	1			11 (35.5)	1		
HNA1a+/1b-/1c+	40 (17.1)		11 (13.9)	0.73 (0.33-1.63)	$P=0.448$	ns	5 (16.1)	0.82 (0.27-2.52)	$P=0.727$	ns
HNA1a-/1b+/1c+	22 (9.4)		17 (21.5)	2.06 (0.95-4.46)	$P=0.066$	ns	5 (16.1)	1.49 (0.47-4.75)	$P=0.502$	ns
HNA1a+/1b+/1c+	12 (5.1)		4 (5.1)	0.89 (0.26-3.00)	$P=0.849$	ns	2 (6.5)	1.09 (0.21-5.54)	$P=0.916$	ns
Allele carriage										
≥ 1 HNA1a allotype	175 (74.8)		55 (69.6)	0.77 (0.44-1.36)	$P=0.369$	ns	22 (71.0)	0.82 (0.36-1.89)	$P=0.648$	ns
≥ 1 HNA1b allotype	129 (55.1)		55 (69.6)	1.87 (1.08-3.21)	$P=0.025$	ns	22 (71.0)	1.99 (0.88-4.50)	$P=0.099$	ns
≥ 1 HNA1c allotype	87 (37.2)		32 (40.5)	1.15 (0.68-1.94)	$P=0.599$	ns	12 (38.7)	1.07 (0.49-2.30)	$P=0.869$	ns
	In utero transmitting					In utero-enriched transmitting				
	N (\%)	OR (95 \% CI)		P value	$\mathrm{P}_{\text {Bonf }}$	N (\%)	OR (95 \% CI)		P value	$\mathrm{P}_{\text {Bonf }}$
FCYRIIa (rs1801274)				$\mathrm{P}=0.182$	ns				$P=0.545$	ns
Genotype										
131HH (ref)	2 (10.0)	1				9 (18.8)) 1			
131HR	9 (45.0)	2.55 (0.53-12.17)		$P=0.241$	ns	22 (45.8)) 1.38	(0.60-3.20) P	$P=0.447$	ns
131RR	9 (45.0)	3.97 (0.83-19.10)		$P=0.085$	ns	17 (35.4)) 1.67	(0.69-4.02) P	$P=0.225$	ns
Allele carriage										
$\geq 1131 \mathrm{H}$ allele	11 (55.0)	0.50 (0.20	-1.26)	$P=0.143$	ns	31 (64.6)	0.75	(0.39-1.44) P	$\mathrm{P}=0.383$	ns
$\geq 1131 \mathrm{R}$ allele	18 (90.0)	3.10 (0.70	-13.77)	$P=0.136$	ns	39 (81.3)) 1.49	(0.68-3.27) P	$\mathrm{P}=0.314$	ns

Table 2 continued

	In utero transmitting				In utero-enriched transmitting			
	N (\%)	OR (95 \% CI)	P value	$\mathrm{P}_{\text {Bonf }}$	N (\%)	OR (95 \% CI)	P value	$\mathrm{P}_{\text {Bonf }}$
FCyRIIb (rs 1050501)			$P=0.125$	ns			$P=0.274$	ns
Genotype								
232II (ref)	10 (50.0)	1			20 (41.7)	1		
$2321 T$	6 (30.0)	0.66 (0.23-1.87)	$P=0.434$	ns	21 (43.8)	1.15 (0.59-2.25)	$P=0.678$	ns
232TT	4 (20.0)	2.51 (0.71-8.87)	$P=0.153$	ns	7 (14.6)	2.20 (0.81-5.94)	$P=0.121$	ns
Allele carriage								
≥ 12321 allele	16 (80.0)	0.33 (0.10-1.10)	$P=0.072$	ns	41 (85.4)	0.49 (0.19-1.24)	$P=0.133$	ns
$\geq 1232 \mathrm{~T}$ allele	10 (50.0)	0.93 (0.37-2.33)	$P=0.883$	ns	28 (58.3)	1.31 (0.70-2.45)	$P=0.403$	ns
FcyRIIII (rs396991)			$P=0.137$	ns			$P=0.0004$	0.017
Genotype								
158F/FF/FF (ref)	11 (55.0)	1			30 (62.5)	1		
158FV/FFV/FVV	8 (40.0)	0.46 (0.18-1.19)	$P=0.108$	ns	12 (25.0)	0.25 (0.12-0.52)	$P=0.0001$	0.004
158V/VV	1 (5.0)	0.19 (0.02-1.50)	$P=0.115$	ns	6 (12.5)	0.41 (0.16-1.07)	$P=0.069$	ns
Allele carriage								
$\geq 1158 \mathrm{~F}$ allele	19 (95.0)	3.57 (0.46-27.48)	$P=0.222$	ns	42 (87.5)	1.31 (0.52-3.31)	$P=0.562$	ns
$\geq 1158 \mathrm{~V}$ allele	9 (45.0)	0.39 (0.16-0.99)	$P=0.048$	ns	18 (37.5)	0.29 (0.15-0.55)	$P=0.0001$	0.004
FcyRIIIb			$P=0.320$	ns			$P=0.123$	ns
Genotype								
HNA1a+/1b-/1c-	6 (30.0)	2.82 (0.67-11.82)	$P=0.155$	ns	9 (18.8)	0.79 (0.33-1.94)	$P=0.612$	ns
HNA1a-/1b+/1c-	1 (5.0)	1.04 (0.10-10.53)	$P=0.971$	ns	3 (6.3)	0.59 (0.16-2.20)	$P=0.429$	ns
HNA1a-/1b-/1c+	0 (0)	-			0 (0)	-		
$\begin{aligned} & \text { HNA1a+/1b+/1c- } \\ & \text { (ref) } \end{aligned}$	3 (15.0)	1			16 (33.3)	1		
HNA1a $+/ 1 \mathrm{~b}-/ 1 \mathrm{c}+$	4 (20.0)	2.40 (0.51-11.26)	$P=0.267$	ns	6 (12.5)	0.68 (0.24-1.86)	$P=0.448$	ns
HNA1a-/1b+/1c+	5 (25.0)	5.45 (1.21-24.66)	$P=0.028$	ns	12 (25.0)	2.45 (1.01-5.96)	$P=0.047$	ns
HNA1a+/1b+/1c+	1 (5.0)	2.00 (0.19-20.85)	$P=0.562$	ns	2 (4.2)	0.75 (0.15-3.68)	$P=0.723$	ns
Allele carriage								
≥ 1 HNA1a allotype	14 (70.0)	0.79 (0.29-2.14)	$P=0.638$	ns	33 (68.8)	0.74 (0.38-1.46)	$P=0.388$	ns
≥ 1 HNA1b allotype	10 (50.0)	0.81 (0.33-2.03)	$P=0.659$	ns	33 (68.8)	1.79 (0.92-3.47)	$P=0.085$	ns
≥ 1 HNA1c allotype	10 (50.0)	1.69 (0.68-4.22)	$P=0.262$	ns	20 (41.7)	1.21 (0.64-2.27)	$P=0.560$	ns

P values less than 0.05 are indicated in italics
$P_{\text {Bonf }}$ Bonferroni corrected P value, $O R$ odds ratio, $C l$ confidence interval, ns not statistically significant, - , the variable of interest was not detected in any of the cases and thus could not be analysed
$\mathrm{D}^{\prime}=0.351, \mathrm{r}^{2}=0.077$ and $\mathrm{P}=0.002, \mathrm{D}^{\prime}=0.448$, $\mathrm{r}^{2}=0.052$, respectively), with the Fc γ RIIIa-158V allele overrepresented in individuals bearing an FcyRIIa-131H allele compared to FcyRIIa-131RR individuals (66 vs. 39 \%) and in individuals bearing an FcyRIIb-232I allele compared to FcץRIIb-232TT individuals (59 vs. 39 \%). When adjusted for FcyRIIIa-F158V in the multivariate analysis, all associations for the FcyRIIa-H131R and FcyRIIb-I232T weakened with the majority losing significance (Table 6). This suggests that the associations observed for FcyRIIa-H131R and Fc γ RIIb-I232T potentially resulted from LD with FcyRIIIa-F158V.

Discussion

The extent to which FcyR-mediated effector mechanisms contribute to the risk of HIV-1 transmission and acquisition is currently undefined. Through the study of FcyR functional variants we indirectly demonstrated a role for $\mathrm{Fc} \gamma \mathrm{R}$-mediated effector functions in modulating perinatal HIV-1 transmission and acquisition. Our findings indicate that the FcyRIIIa-F158V variant that alters antibody binding affinity and functional capacity is associated with infectiousness of an HIV-1 infected mother, while the FcyRIIIb-HNA1a|b|c variant that affects neutrophil effector function is associated with both maternal infectiousness and infant susceptibility.

Table 3 Maternal FcүR variants associated with perinatal HIV-1 transmission after adjusting for confounding variables

	Total transmitting				Intrapartum transmitting			
	Univariate	Adjusted for $\mathrm{VL}^{\text {a }}$		$\mathrm{P}_{\text {Bonf }}$	Univariate	Adjusted for VL		$P_{\text {Bonf }}$
		AOR (95\% CI)	P value			AOR (95\% CI)	P value	
FCYRIIa (rs 1801274)								
Genotype								
131 HH (ref)		1				1		
131HR	$P=0.378$	1.81 (0.82-3.99)	$P=0.141$	ns	$P=0.558$	1.43 (0.46-4.46)	$\mathrm{P}=0.539$	ns
131RR	$P=0.172$	2.59 (1.14-5.87)	$P=0.023$	ns	$P=0.371$	2.57 (0.80-8.26)	$\mathrm{P}=0.113$	ns
Allele carriage								
$\geq 1131 \mathrm{H}$ allele	$P=0.288$	0.58 (0.33-1.05)	$P=0.071$	ns	$P=0.464$	0.49 (0.21-1.16)	$P=0.106$	ns
$\geq 1131 \mathrm{R}$ allele	$P=0.233$	2.11 (1.00-4.42)	$P=0.049$	ns	$P=0.449$	1.82 (0.64-5.23)	$P=0.263$	ns
FCyRIIb (rs 1050501)								
Genotype								
23211 (ref)		1				1		
$2321 T$	$P=0.450$	1.29 (0.71-2.35)	$P=0.408$	ns	$P=0.442$	1.60 (0.65-3.93)	$P=0.309$	ns
232TT	$P=0.075$	2.80 (1.11-7.10)	$P=0.030$	ns	$P=0.242$	3.25 (0.87-12.17)	$\mathrm{P}=0.080$	ns
Allele carriage								
≥ 12321 allele	$P=0.103$	0.41 (0.17-0.97)	$P=0.043$	ns	$P=0.239$	0.40 (0.12-1.33)	$P=0.133$	ns
$\geq 1232 \mathrm{~T}$ allele	$P=0.231$	1.49 (0.84-2.62)	$\mathrm{P}=0.171$	ns	$P=0.317$	1.81 (0.77-4.28)	$P=0.175$	ns
FCyRIIIa (rs396991)								
Genotype								
158F/FF/FF (ref)		1				1		
158FV/FFV/FVV	$P=0.010$	0.51 (0.28-0.92)	$P=0.026$	ns	$P=0.672$	1.09 (0.45-2.64)	$P=0.850$	ns
158V/VV	$P=0.041$	0.30 (0.11-082)	$P=0.018$	ns	$P=0.266$	0.20 (0.02-1.70)	$P=0.141$	ns
Allele carriage								
$\geq 1158 \mathrm{~F}$ allele	$P=0.217$	2.29 (0.89-5.88)	$\mathrm{P}=0.084$	ns	$P=0.183$	5.22 (0.67-40.41)	$\mathrm{P}=0.114$	ns
$\geq 1158 \mathrm{~V}$ allele	$P=0.004$	0.46 (0.26-0.82)	$P=0.008$	ns	$P=0.980$	0.89 (0.37-2.12)	$P=0.786$	ns
FcyRIIIb								
Genotype								
HNA1a+/1b-/1c-	$P=0.315$	0.47 (0.20-1.10)	$\mathrm{P}=0.083$	ns	$P=0.276$	0.45 (0.12-1.61)	$P=0.218$	ns
HNA1a-/1b+/1c-	$P=0.668$	0.90 (0.33-2.46)	$\mathrm{P}=0.839$	ns	$P=0.837$	1.31 (0.35-4.87)	$\mathrm{P}=0.683$	ns
HNA1a-/1b-/1c+	-	-			-	-		
HNA1a+/1b+/1c- (ref)		1				1		
HNA1a+/1b-/1c+	$P=0.448$	0.63 (0.26-1.51)	$P=0.300$	ns	$P=0.727$	0.68 (0.19-2.42)	$P=0.547$	ns
HNA1a-/1b+/1c+	$P=0.066$	1.37 (0.59-3.19)	$P=0.466$	ns	$P=0.502$	1.20 (0.35-4.15)	$P=0.777$	ns
HNA1a+/1b+/1c+	$P=0.849$	0.42 (0.10-1.71)	$\mathrm{P}=0.226$	ns	$P=0.916$	0.42 (0.05-3.72)	$\mathrm{P}=0.433$	ns
Allele carriage								
≥ 1 HNA1a allotype	$P=0.369$	0.78 (0.43-1.44)	$P=0.433$	ns	$P=0.648$	0.73 (0.30-1.75)	$\mathrm{P}=0.481$	ns
≥ 1 HNA1b allotype	$P=0.025$	2.11 (1.16-3.85)	$P=0.014$	ns	$P=0.099$	2.18 (0.90-5.33)	$P=0.086$	ns
≥ 1 HNA1c allotype	$P=0.599$	0.95 (0.54-1.68)	$\mathrm{P}=0.865$	ns	$\mathrm{P}=0.869$	0.88 (0.38-2.04)	$P=0.759$	ns

In utero transmitting				In utero-enriched transmitting			
Univariate	Adjusted for VL + bwt		$\mathrm{P}_{\text {Bonf }}$	Univariate	Adjusted for VL		$\mathrm{P}_{\text {Bonf }}$
	AOR (95\% CI)	P value			AOR (95 \% CI)	P value	

FcyRIla (rs1801274)

Genotype

131 HH (ref)		1					
131 HR	$P=0.241$	$5.74(0.66-49.93)$	$P=0.113$	ns	$P=0.447$	$2.28(0.84-6.17)$	$P=0.105$
131 RR	$P=0.085$	$11.46(1.29-101.86)$	$P=0.029$	$n s$	$P=0.225$	$2.82(1.01-7.89)$	$P=0.048$

Table 3 continued

	In utero transmitting				In utero-enriched transmitting			
	Univariate	Adjusted for VL + bwt		$P_{\text {Bonf }}$	Univariate	Adjusted for VL		$\mathrm{P}_{\text {Bonf }}$
		AOR (95\% CI)	P value			AOR (95\% CI)	P value	
Allele carriage								
$\geq 1131 \mathrm{H}$ allele	$P=0.143$	0.34 (0.12-0.97)	$P=0.045$	ns	$P=0.383$	0.63 (0.32-1.27)	$P=0.200$	ns
$\geq 1131 \mathrm{R}$ allele	$P=0.136$	7.65 (0.94-62.32)	$\mathrm{P}=0.057$	ns	$P=0.314$	2.50 (0.97-6.40)	$P=0.057$	ns
FCyRIIb (rs1050501)								
Genotype								
23211 (ref)						1		
$2321 T$	$P=0.434$	0.67 (0.22-2.06)	$P=0.487$	ns	$P=0.678$	1.15 (0.56-2.35)	$P=0.707$	ns
232TT	$P=0.153$	3.38 (0.73-15.61)	$P=0.119$	ns	$P=0.121$	2.57 (0.85-7.74)	$P=0.094$	ns
Allele carriage								
≥ 12321 allele	$P=0.072$	0.25 (0.06-1.07)	$P=0.062$	ns	$P=0.133$	0.42 (0.15-1.18)	$P=0.100$	ns
≥ 1232 T allele	$P=0.883$	0.93 (0.34-2.54)	$\mathrm{P}=0.891$	ns	$P=0.403$	1.33 (0.67-2.61)	$P=0.412$	ns
FCyRIIIa (rs396991)								
Genotype								
158F/FF/FF (ref)		1				1		
158FV/FFV/FVV	$P=0.108$	0.60 (0.21-1.71)	$P=0.341$	ns	$P=0.0001$	0.29 (0.14-0.63)	$P=0.002$	ns
158V/VV	$P=0.115$	0.19 (0.02-1.68)	$\mathrm{P}=0.135$	ns	$\mathrm{P}=0.069$	0.34 (0.11-0.98)	$P=0.046$	ns
Allele carriage								
$\geq 1158 \mathrm{~F}$ allele	$P=0.222$	4.01 (0.48-33.16)	$P=0.198$	ns	$P=0.562$	1.71 (0.61-4.80)	$P=0.305$	ns
$\geq 1158 \mathrm{~V}$ allele	$P=0.048$	0.50 (0.18-1.36)	$\mathrm{P}=0.174$	ns	$P=0.0001$	0.31 (0.15-0.62)	$P=0.001$	0.042
FCYRIIlb								
Genotype								
HNA1a+/1b-/1c-	$P=0.155$	1.44 (0.30-6.85)	$P=0.644$	ns	$P=0.612$	0.45 (0.16-1.24)	$P=0.124$	ns
HNA1a-/1b+/1c-	$P=0.971$	1.26 (0.12-13.63)	$\mathrm{P}=0.851$	ns	$P=0.429$	0.66 (0.17-2.56)	$P=0.544$	ns
HNA1a-/1b-/1c+	-	-			-	-		
$\begin{aligned} & \text { HNA1a+/1b+/1c- } \\ & \text { (ref) } \end{aligned}$		1				1		
HNA1a+/1b-/1c+	$P=0.267$	1.88 (0.37-9.46)	$P=0.442$	ns	$P=0.448$	0.59 (0.20-1.68)	$P=0.321$	ns
HNA1a-/1b+/1c+	$P=0.028$	3.10 (0.60-15.95)	$P=0.177$	ns	$P=0.047$	1.53 (0.58-4.02)	$P=0.388$	ns
HNA1a+/1b+/1c+	$P=0.562$	1.10 (0.10-12.45)	$P=0.939$	ns	$P=0.723$	0.44 (0.08-2.28)	$P=0.326$	ns
Allele carriage								
≥ 1 HNA1a allotype	$\mathrm{P}=0.638$	0.85 (0.28-2.63)	$P=0.783$	ns	$P=0.388$	0.79 (0.38-1.64)	$\mathrm{P}=0.523$	ns
≥ 1 HNA1b allotype	$P=0.659$	1.09 (0.39-3.02)	$P=0.868$	ns	$P=0.085$	2.23 (1.08-4.62)	$P=0.031$	ns
≥ 1 HNA1c allotype	$P=0.262$	1.51 (0.55-4.14)	$P=0.420$	ns	$P=0.560$	1.04 (0.53-2.06)	$P=0.904$	ns

${ }^{\text {a }}$ The multivariate analysis adjusted for demographic and clinical variables that independently associated with transmission. Due to high correlation with viral load, CD4 T cell counts were not included in the multivariate model
P values less than 0.05 are indicated in italics
$P_{\text {Bonf }}$ Bonferroni corrected P value, $A O R$ adjusted odds ratio, Cl confidence interval, VL viral load, bwt birth weight, ns not statistically significant, - , the variable of interest was not detected in any of the cases and thus could not be analysed

The significance of $\mathrm{Fc} \gamma \mathrm{R}$-mediated effector functions in maintaining immune homeostasis is validated by the association of functionally significant Fc $\gamma \mathrm{R}$ variants with immune disorders [18]. Here we describe an association between the high binding FcyRIIIa allele and reduced maternal infectiousness in perinatal transmission of HIV-1. In particular, carriage of the FcyRIIIa-158V allele by the mother was associated with $\sim 50 \%$ reduction in
the odds of HIV-1 transmission. The significant association in the in utero-enriched transmission group, but not in the intrapartum group, suggests that the underlying mechanism may be more pronounced at the maternofoetal interface. Fc γ RIIIa-bearing leukocytes, including natural killer cells, macrophages and $\gamma \delta$ T lymphocytes, are readily recruited to the decidua where they likely contribute to eliminating cell-associated HIV-1 through

Table 4 FcyR genotypes and allele carriage in HIV-1 exposed-uninfected and infected infants

	Exposed-uninfectedN (\%)	Total infected				Intrapartum infected			
		N (\%)	OR (95 \% CI)	P value	$\mathrm{P}_{\text {Bonf }}$	N (\%)	OR (95 \% CI)	P value	$\mathrm{P}_{\text {Bonf }}$
FCyRIIa (rs 1801274)	Overall association			$P=0.704$	ns			$P=0.907$	ns
Genotype									
131HH (ref)	47 (20.0)	19 (24.4)	1			7 (22.6)	1		
131HR	116 (49.4)	36 (46.2)	0.77 (0.40-1.47)	$P=0.426$	ns	14 (45.2)	$0.81(0.31-2.13)$	$P=0.670$	ns
131RR	72 (30.6)	23 (29.5)	0.79 (0.39-1.61)	$P=0.516$	ns	10 (32.3)	0.93 (0.33-2.62)	$P=0.895$	ns
Allele carriage									
$\geq 1131 \mathrm{H}$ allele	163 (69.4)	55 (70.5)	1.06 (0.60-1.85)	$P=0.848$	ns	21 (67.7)	0.93 (0.42-2.07)	$P=0.854$	ns
$\geq 1131 \mathrm{R}$ allele	188 (80.0)	59 (75.6)	0.76 (0.42-1.43)	$P=0.414$	ns	24 (77.4)	0.86 (0.35-2.11)	$P=0.737$	ns
FCYRIIb (rs 1050501)	Overall association			$P=0.278$	ns			$P=0.773$	ns
Genotype									
232II (ref)	116 (49.4)	33 (42.3)	1			14 (45.2)	1		
$2321 T$	90 (38.3)	30 (38.5)	1.17 (0.67-2.06)	$P=0.583$	ns	12 (38.7)	1.10 (0.49-2.51)	$P=0.811$	ns
232TT	29 (12.3)	15 (19.2)	1.82 (0.87-3.79)	$P=0.110$	ns	5 (16.1)	1.43 (0.48-4.29)	$P=0.525$	ns
Allele carriage									
≥ 12321 allele	206 (86.8)	63 (78.6)	0.59 (0.30-1.17)	$P=0.132$	ns	26 (83.9)	0.73 (0.26-2.06)	$P=0.554$	ns
$\geq 1232 \mathrm{~T}$ allele	119 (47.2)	45 (55.7)	1.33 (0.79-2.23)	$P=0.280$	ns	17 (54.8)	1.18 (0.56-2.51)	$P=0.660$	ns
FcyRIIII (rs396991)	Overall association		$\mathrm{P}=0.339$		ns			$P=0.964$	ns
Genotype									
158F/FF/FF (ref)	86 (36.6)	34 (43.6)	1			12 (38.7)	1		
158FV/FFV/FVV	118 (50.2)	38 (48.7)	0.81 (0.47-1.40)	$P=0.456$	ns	15 (48.4)	0.91 (0.41-2.04)	$P=0.821$	ns
158V/VV	31 (13.2)	6 (7.7)	0.49 (0.19-1.28)	$P=0.145$	ns	4 (12.9)	0.92 (0.28-3.08)	$\mathrm{P}=0.899$	ns
Allele carriage									
$\geq 1158 \mathrm{~F}$ allele	194 (82.6)	72 (92.3)	0.75 (0.44-1.26)	$P=0.272$	ns	27 (87.1)	0.91 (0.42-1.97)	$P=0.819$	ns
$\geq 1158 \mathrm{~V}$ allele	149 (63.4)	44 (56.4)	1.82 (0.73-4.55)	$P=0.198$	ns	19 (61.3)	1.03(0.34-3.13)	$P=0.964$	ns
FcyRIIIb	Overall association			$P=0.046$	ns			$P=0.023$	ns
Genotype									
HNA1a+/1b-/1c-	58 (24.7)	9 (11.5)	0.42 (0.18-0.96)	$P=0.040$	ns	2 (6.5)	0.19(0.04-0.89)	$P=0.035$	ns
HNA1a-/1b+/1c-	25 (10.6)	7 (9.0)	0.76 (0.29-1.95)	$P=0.565$	ns	1 (3.2)	0.22 (0.03-1.81)	$P=0.160$	ns
HNA1a-/1b-/1c+	14 (6.0)	4 (5.1)	0.77 (0.23-2.55)	$P=0.672$	ns	0 (0)	-		
HNA1a+/1b+/1c- (ref)	73 (31.2)	27 (34.6)	1			13 (41.9)	1		
HNA1a+/1b-/1c+	36 (15.3)	11 (14.1)	0.83 (0.37-1.85)	$P=0.643$	ns	7 (22.6)	1.09 (0.40-2.97)	$P=0.863$	ns
HNA1a-/1b+/1c+	22 (9.4)	13 (16.7)	1.60 (0.71-3.61)	$P=0.260$	ns	7 (22.6)	1.79 (0.63-5.03)	$P=0.272$	ns
HNA1a+/1b+/1c+	7 (3.0)	7 (9.0)	2.70 (0.87-8.43)	$P=0.086$	ns	1 (3.2)	0.80 (0.09-7.07)	$P=0.843$	ns
Allele carriage									
≥ 1 HNA1a allotype	174 (74.0)	54 (69.2)	0.79 (0.45-1.38)	$P=0.408$	ns	23 (74.2)	1.01 (0.43-2.37)	$P=0.986$	ns
≥ 1 HNA1b allotype	127 (54.0)	54 (69.2)	1.91 (1.11-3.30)	$P=0.020$	ns	22 (71.0)	2.08 (0.92-4.70)	$P=0.079$	ns
≥ 1 HNA1c allotype	79 (33.6)	35 (44.9)	1.61 (0.95-2.71)	$P=0.075$	ns	15 (48.4)	1.85 (0.87-3.94)	$P=0.110$	ns

	In utero infected				In utero-enriched infected			
	N (\%)	OR (95 \% CI)	P value	$\mathrm{P}_{\text {Bonf }}$	N (\%)	OR (95 \% CI)	P value	$\mathrm{P}_{\text {Bonf }}$
FCyRIIa (rs1801274)			$\mathrm{P}=0.265$	ns			$P=0.693$	ns
Genotype								
131HH (ref)	4 (21.1)	1			12 (25.5)	1		
131HR	6 (31.6)	0.61 (0.16-2.25)	$P=0.456$	ns	22 (46.8)	0.74 (0.34-1.62)	$P=0.455$	ns
131RR	9 (47.4)	1.47 (0.43-5.04)	$P=0.541$	ns	13 (27.7)	0.71 (0.30-1.68)	$P=0.433$	ns
Allele carriage								
$\geq 1131 \mathrm{H}$ allele	10 (52.6)	0.49 (0.19-1.26)	$P=0.139$	ns	34 (72.3)	1.16 (0.58-2.32)	$P=0.685$	ns
$\geq 1131 \mathrm{R}$ allele	15 (78.9)	0.94 (0.30-2.96)	$P=0.912$	ns	35 (74.5)	0.73 (0.35-1.51)	$P=0.396$	ns

Table 4 continued

	In utero infected				In utero-enriched infected			
	N (\%)	OR (95 \% CI)	P value	$\mathrm{P}_{\text {Bonf }}$	N (\%)	OR (95 \% CI)	P value	$\mathrm{P}_{\text {Bonf }}$
FCyRIIb (rs 1050501)			$P=0.083$	ns			$P=0.218$	ns
Genotype								
23211 (ref)	7 (36.8)	1			19 (40.4)	1		
$2321 T$	6 (31.6)	1.10 (0.36-3.40)	$P=0.862$	ns	18 (38.3)	1.22 (0.61-2.46)	$P=0.577$	ns
232TT	6 (31.6)	3.43 (1.07-10.98)	$P=0.038$	ns	10 (21.3)	2.11 (0.88-5.01)	$P=0.092$	ns
Allele carriage								
≥ 12321 allele	13 (68.4)	0.31 (0.11-0.87)	$P=0.026$	ns	37 (78.7)	0.52 (0.23-1.16)	$P=0.110$	ns
$\geq 1232 \mathrm{~T}$ allele	12 (63.2)	1.67 (0.64-4.39)	$P=0.298$	ns	28 (59.6)	1.44 (0.76-2.71)	$P=0.264$	ns
FcyRIIII (rs396991)			$\mathrm{P}=0.711$	ns			$P=0.145$	ns
Genotype								
158F/FF/FF (ref)	9 (47.4)	1			22 (46.8)	1		
158FV/FFV/FVV	8 (42.1)	0.65 (0.24-1.75)	$P=0.391$	ns	23 (48.9)	0.76 (0.40-1.46)	$P=0.410$	ns
158V/VV	2 (10.5)	0.62 (0.13-3.01)	$\mathrm{P}=0.550$	ns	2 (4.3)	0.25 (0.06-1.14)	$P=0.073$	ns
Allele carriage								
$\geq 1158 \mathrm{~F}$ allele	17 (89.5)	0.64 (0.25-1.64)	$P=0.354$	ns	45 (95.7)	0.66 (0.35-1.23)	$P=0.190$	ns
$\geq 1158 \mathrm{~V}$ allele	10 (52.6)	1.29 (0.28-5.87)	$P=0.740$	ns	25 (53.2)	3.42 (0.79-14.81)	$P=0.100$	ns
FcyRIIIb			$P=0.182$	ns			$P=0.079$	ns
Genotype								
HNA1a+/1b-/1c-	3 (15.8)	0.76 (0.17-3.29)	$P=0.709$	ns	7 (14.9)	0.63 (0.24-1.66)	$P=0.350$	ns
HNA1a-/1b+/1c-	1 (5.3)	0.58 (0.07-5.24)	$P=0.631$	ns	6 (12.8)	1.25 (0.43-3.61)	$P=0.678$	ns
HNA1a-/1b-/1c+	1 (5.3)	1.04 (0.11-9.62)	$P=0.970$	ns	4 (8.5)	1.49 (0.43-5.20)	$P=0.532$	ns
$\begin{aligned} & \mathrm{HNA} 1 \mathrm{a}+/ 1 \mathrm{~b}+/ 1 \mathrm{c}- \\ & \text { (ref) } \end{aligned}$	5 (26.3)	1			14 (29.8)	1		
HNA1a+/1b-/1c+	2 (10.5)	0.81 (0.15-4.39)	$P=0.808$	ns	4 (8.5)	0.58 (0.18-1.89)	$P=0.365$	ns
HNA1a-/1b+/1c+	5 (26.3)	3.32 (0.88-12.52)	$P=0.077$	ns	6 (12.8)	1.42 (0.49-4.14)	$P=0.518$	ns
HNA1a $+/ 1 \mathrm{~b}+/ 1 \mathrm{c}+$	2 (10.5)	4.17 (0.68-25.59)	$P=0.123$	ns	6 (12.8)	4.47 (1.30-15.31)	$P=0.017$	ns
Allele carriage								
≥ 1 HNA1a allotype	12 (63.2)	0.60 (0.23-1.60)	$P=0.307$	ns	31 (66.0)	0.70 (0.35-1.33)	$P=0.258$	ns
≥ 1 HNA1b allotype	13 (68.4)	1.84 (0.68-5.01)	$P=0.231$	ns	32 (68.1)	1.81 (0.93-3.53)	$P=0.079$	ns
≥ 1 HNA1c allotype	10 (52.6)	2.19 (0.86-5.62)	$P=0.101$	ns	20 (42.6)	1.46 (0.77-2.77)	$P=0.243$	ns

P values less than 0.05 are indicated in italics
$P_{\text {Bonf }}$ Bonferroni corrected P value, OR odds ratio, Cl confidence interval, ns not statistically significant, - , the variable of interest was not detected in any of the cases and thus could not be analysed

ADCC [19, 20]. While decidual natural killer cells are primarily FcyRIIIa negative during a healthy pregnancy, they likely upregulate FcyRIIIa expression in the presence of HIV-1 as demonstrated for other perinatally transmitted viruses-human cytomegalovirus and hepatitis C virus [21, 22]. Since cell-associated HIV-1 is thought to be more infectious in utero compared to cell-free virus [23], ADCC-mediated killing of HIV-1 infected cells may contribute to protective immunity at the maternofoetal interface. Of consequence, the FcyRIIIa-F158V variant impacts on ADCC capacity, such that the FcyRIIIa-158V allele exhibits enhanced IgG binding and ADCC capacity compared to the FcyRIIIa-158F allele [7, 24]. The decreased in utero transmission risk associated with the

FcyRIIIa-158V allele suggests that the enhanced ADCC capacity conferred by this variant may potentiate elimination of cell-associated HIV-1 and reduce the odds of HIV-1 crossing the placenta through cell-cell interactions. However, the role of ADCC and other potential FcyRIIIa-mediated immune mechanisms-systemic or localized-in perinatal HIV-1 transmission needs to be further elucidated.
In contrast to that observed for the FcyRIIIa-F158V variant, an association between the FcyRIIIb-HNA1a|b|c allotype and perinatal HIV-1 transmission was observed in both the mother and infant. The different FcyRIIIb allotypes arise from multiple amino acid substitutions that do not alter antibody binding affinity, but affect the

Table 5 Infant FcyR variants associated with perinatal HIV-1 acquisition after adjusting for confounding variables

		Total infected				Intrapartum infected			
		Univariate	Adjusted for VL ${ }^{\text {a }}$		$P_{\text {Bonf }}$	Univariate	Adjusted for VL		$P_{\text {Bonf }}$
			AOR (95\% CI)	P value			AOR (95\% CI)	P value	
FCYRIIa (rs1801274)									
Genotype									
131 HH (ref)			1				1		
131HR		$P=0.426$	0.79 (0.38-1.62)	$P=0.519$	ns	$P=0.670$	0.80 (0.27-2.32)	$P=0.685$	ns
131RR		$P=0.516$	0.84 (0.39-1.83)	$P=0.657$	ns	$P=0.895$	0.97 (0.31-2.97)	$P=0.951$	ns
Allele carriage									
$\geq 1131 \mathrm{H}$ allele		$P=0.848$	1.01 (0.55-1.85)	$P=0.970$	ns	$P=0.854$	0.89 (0.37-2.12)	$P=0.792$	ns
$\geq 1131 \mathrm{R}$ allele		$P=0.414$	0.81 (0.41-1.59)	$P=0.536$	ns	$P=0.737$	0.87 (0.32-2.32)	$P=0.774$	ns
FCyRIIb (rs 1050501)									
Genotype									
232II (ref)			1				1		
$2321 T$		$P=0.583$	1.29 (0.70-2.39)	$P=0.415$	ns	$P=0.811$	1.40 (0.57-3.44)	$P=0.469$	ns
232TT		$\mathrm{P}=0.110$	1.97 (0.89-4.37)	$P=0.096$	ns	$P=0.525$	1.82 (0.56-5.90)	$P=0.317$	ns
Allele carriage									
≥ 12321 allele		$P=0.132$	0.57 (0.28-1.20)	$P=0.140$	ns	$P=0.554$	0.65 (0.22-1.90)	$P=0.429$	ns
$\geq 1232 \mathrm{~T}$ allele		$\mathrm{P}=0.280$	1.46 (0.83-2.57)	$P=0.195$	ns	$P=0.660$	1.50 (0.65-3.47)	$P=0.344$	ns
FCyRIIIa (rs396991)									
Genotype									
158F/FF/FF (ref)			1				1		
158FV/FFV/FVV		$P=0.456$	0.87 (0.49-1.56)	$P=0.647$	ns	$P=0.821$	1.14 (0.49-2.66)	$P=0.764$	ns
158V/VV		$P=0.145$	0.28 (0.08-1.00)	$P=0.051$	ns	$P=0.899$	0.28 (0.03-2.27)	$P=0.232$	ns
Allele carriage									
$\geq 1158 \mathrm{~F}$ allele		$P=0.272$	3.34 (0.96-11.57)	$P=0.058$	ns	$P=0.819$	3.89 (0.50-30.31)	$P=0.194$	ns
$\geq 1158 \mathrm{~V}$ allele		$P=0.198$	0.75 (0.43-1.31)	$P=0.311$	ns	$P=0.964$	0.95 (0.42-2.19)	$P=0.910$	ns
FcyRIIIb									
Genotype									
HNA1a+/1b-/1c-		$P=0.040$	0.37 (0.15-0.92)	$P=0.033$	ns	$P=0.035$	0.20 (0.04-0.96)	$P=0.044$	ns
HNA1a-/1b+/1c-		$P=0.565$	0.69 (0.25-1.86)	$P=0.459$	ns	$P=0.160$	0.20 (0.03-1.69)	$P=0.139$	ns
HNA1a-/1b-/1c+		$P=0.672$	0.70 (0.18-2.78)	$P=0.616$	ns	-	-		$\mathrm{P}=0.970$
HNA1a+/1b+/1c-			1				1		
HNA1a+/1b-/1c+		$P=0.643$	0.73 (0.31-1.72)	$P=0.478$	ns	$P=0.863$	0.97 (0.33-2.79)	$P=0.949$	ns
HNA1a-/1b+/1c+		$P=0.260$	1.57 (0.64-3.88)	$P=0.326$	ns	$P=0.272$	1.80 (0.57-5.71)	$P=0.316$	ns
HNA1a+/1b+/1c+		$P=0.086$	2.36 (0.63-8.75)	$P=0.201$	ns	$P=0.843$	-	ns	$\mathrm{P}=0.123$
Allele carriage									
≥ 1 HNA1a allotype		$P=0.408$	0.79 (0.43-1.46)	$P=0.452$	ns	$P=0.986$	1.01 (0.40-2.56)	$P=0.981$	ns
≥ 1 HNA1b allotype		$P=0.020$	2.02 (1.12-3.64)	$P=0.019$	ns	$P=0.079$	1.91 (0.81-4.53)	$P=0.140$	ns
≥ 1 HNA1c allotype		$P=0.075$	1.52 (0.86-2.69)	$P=0.146$	ns	$P=0.110$	1.74 (0.77-3.96)	$P=0.185$	ns
In utero infected						In utero-enriched infected			
	Univariate		Adjusted for VL + bwt		$\mathrm{P}_{\text {Bonf }}$	Univariate	Adjusted for VL		$\mathrm{P}_{\text {Bonf }}$
			OR (95 \% CI)	value			AOR (95 \% CI)	P value	

FcyRIla (rs1801274)

Genotype

131 HH (ref)		1		1			
131 HR	$P=0.456$	$0.71(0.15-3.25)$	$P=0.657$	ns	$P=0.455$	$0.75(0.32-1.79)$	$P=0.520$
131 RR	$P=0.541$	$1.87(0.45-7.79)$	$P=0.390$	ns	$P=0.433$	$0.77(0.30-1.96)$	$P=0.581$
	$n s$						

Table 5 continued

	In utero infected				In utero-enriched infected			
	Univariate	Adjusted for VL + bwt		$P_{\text {Bonf }}$	Univariate	Adjusted for VL		$P_{\text {Bonf }}$
		AOR (95\% CI)	P value			AOR (95 \% CI)	P value	
Allele carriage								
$\geq 1131 \mathrm{H}$ allele	$P=0.139$	0.42 (0.15-1.21)	$P=0.108$	ns	$P=0.685$	1.07 (0.51-2.22)	$P=0.858$	ns
$\geq 1131 \mathrm{R}$ allele	$P=0.912$	1.17 (0.31-4.58)	$P=0.817$	ns	$P=0.396$	0.76 (0.34-1.70)	$P=0.503$	ns
FCyRIIb (rs 1050501)								
Genotype								
23211 (ref)		1				1		
$2321 T$	$\mathrm{P}=0.862$	0.80 (0.23-2.74)	$P=0.724$	ns	$P=0.577$	1.18 (0.56-2.50)	$P=0.658$	ns
232TT	$P=0.038$	3.53 (0.95-13.14)	$P=0.060$	ns	$P=0.092$	2.02 (079-5.16)	$P=0.144$	ns
Allele carriage								
≥ 12321 allele	$P=0.026$	0.26 (0.08-0.86)	$P=0.028$	ns	$P=0.110$	0.54 (0.23-1.28)	$P=0.160$	ns
$\geq 1232 \mathrm{~T}$ allele	$\mathrm{P}=0.298$	1.33 (0.47-3.77)	$\mathrm{P}=0.593$	ns	$P=0.264$	1.38 (0.70-2.74)	$P=0.353$	ns
FcyRIIIa (rs396991)								
Genotype								
158F/FF/FF (ref)		1				1		
158FV/FFV/FVV	$\mathrm{P}=0.391$	0.61 (0.20-1.86)	$P=0.385$	ns	$P=0.410$	0.74 (0.37-1.49)	$P=0.405$	ns
158V/VV	$\mathrm{P}=0.550$	0.85 (0.16-4.42)	$P=0.842$	ns	$P=0.073$	0.29 (0.06-1.36)	$P=0.117$	ns
Allele carriage								
$\geq 1158 \mathrm{~F}$ allele	$P=0.354$	0.93 (0.19-4.53)	$P=0.931$	ns	$P=0.190$	2.91 (0.66-12.92)	$P=0.160$	ns
$\geq 1158 \mathrm{~V}$ allele	$P=0.740$	0.66 (0.23-1.85)	$P=0.425$	ns	$P=0.100$	0.65 (0.33-1.28)	$P=0.215$	ns
FcyRIIIb								
Genotype								
HNA1a+/1b-/1c-	$\mathrm{P}=0.709$	0.77 (0.15-3.86)	$P=0.748$	ns	$P=0.350$	0.53 (0.18-1.52)	$\mathrm{P}=0.234$	ns
HNA1a-/1b+/1c-	$\mathrm{P}=0.631$	0.46 (0.04-4.76)	$P=0.513$	ns	$P=0.678$	1.13 (0.37-3.42)	$\mathrm{P}=0.827$	ns
HNA1a-/1b-/1c+	$P=0.970$	1.48 (0.14-15.83)	$P=0.744$	ns	$P=0.532$	1.33 (0.32-5.54)	$P=0.695$	ns
$\begin{aligned} & \text { HNA1a+/1b+/1c- } \\ & \text { (ref) } \end{aligned}$		1				1		
HNA1a+/1b-/1c+	$P=0.808$	0.65 (0.10-4.10)	$P=0.645$	ns	$P=0.365$	0.50 (0.15-1.67)	$P=0.259$	ns
HNA1a-/1b+/1c+	$P=0.077$	4.47 (0.84-23.80)	$P=0.080$	ns	$P=0.518$	1.50 (0.46-4.92)	$P=0.501$	ns
HNA1a+/1b+/1c+	$\mathrm{P}=0.123$	3.35 (0.40-27.73)	$P=0.262$	ns	$P=0.017$	4.44 (1.14-17.40)	$P=0.032$	ns
Allele carriage								
≥ 1 HNA1a allotype	$P=0.307$	0.58 (0.19-1.76)	$P=0.337$	ns	$P=0.258$	0.66 (0.32-1.37)	$P=0.265$	ns
≥ 1 HNA1b allotype	$P=0.231$	1.82 (0.63-5.32)	$P=0.271$	ns	$P=0.079$	2.16 (1.05-4.44)	$P=0.037$	ns
≥ 1 HNA1c allotype	$P=0.101$	2.16 (0.76-6.14)	$P=0.149$	ns	$P=0.243$	1.42 (0.71-2.81)	$P=0.321$	ns

P values less than 0.05 are indicated in italics
$P_{\text {Bonf }}$ Bonferroni corrected P value, $A O R$ adjusted odds ratio, $C l$ confidence interval, $V L$ viral load, bwt birth weight, - , the variable of interest was not detected in any of the cases and thus could not be analysed
${ }^{\text {a }}$ The multivariate analysis adjusted for demographic and clinical variables that independently associated with transmission. Due to high correlation with viral load, CD4 T cell counts were not included in the multivariate model
glycosylation and tertiary structure of the receptor [9, 24-26]. Neutrophils from FcyRIIIb-HNA1a homozygous donors have an enhanced phagocytic and respiratory burst capacity compared to neutrophils from FcyRIIIbHNA1b homozygous donors [27, 28]. In the present study, homozygosity for the FcүRIIIb-HNA1a allotype in the infant was associated with reduced odds of HIV-1 acquisition compared to other allotype combinations. In
both mother and infant, carriage of at least one FcyRIIIbHNA1b allotype was associated with increased odds of HIV-1 acquisition. Since expression of FcyRIIIb is largely restricted to neutrophils, these findings suggest a potential role for neutrophil-mediated Fc $\gamma \mathrm{R}$ effector functions in modulating perinatal HIV-1 transmission and acquisition. The underlying mechanism may also involve basophils as FcyRIIIb is detected at low levels on

Fig. 2 LD for FcyR variants in the study cohort comprising Black South African HIV-1 infected mothers (left) and their infants (right). Values and colours reflect $r^{2}(\times 100)$ and $D^{\prime} / L O D$ measures of LD, respectively. The black triangle depicts a haplotype block that is indicative of the relationship between the FcyRIIIb-HNA1b and -HNA1c allotypes. Such that HNA1b and HNA1c are identical at amino acid position 65 (p.65S) and differ only at amino acid position $78\left(p .78 \mathrm{~A}^{1 b}>\mathrm{D}^{1 \mathrm{c}}\right)$
a subset of this cell population, although its function here is unknown.

To date, only the FcץRIIa-H131R variant has been studied in perinatal HIV-1 transmission, with an association reported between the FcyRIIa-131HH genotype and increased infant susceptibility [29]. This association was however not observed in the present study. The contrasting findings are likely attributable to study design. In the Brouwer et al. study, infants were considered perinatally infected if PCR positive at or before 4 months of age where in the present study infant infection status was determined up to 6 weeks of age. The implication thereof is that the number of infants that acquired HIV-1 through breastfeeding is likely higher in the Brouwer et al. study compared to the 12.8% in the present study. If this is the case, the findings of the Brouwer et al. study may be more representative of an association with HIV-1 transmission through breastfeeding, rather than in utero or intrapartum transmission.

Perinatal HIV-1 transmission is an attractive model in which to study the role of antibodies and their effector functions in HIV-1 protective immunity. This represents a natural situation where the individual at risk is passively immunized with HIV-1-specific antibodies through transplacental transfer of IgG [30, 31]. This model also affords the opportunity to study both members of the transmitting dyad, allowing the assessment of factors contributing to the infectiousness of the transmitter (mother) as well as the susceptibility of the recipient (infant). The findings of this study therefore not only highlight additional immunological factors associated with risk of perinatal HIV-1 transmission, but further support a role for FcyR-mediated effector functions in HIV-1 protective immunity. In particular, findings
underscore a potential involvement of neutrophils in protection from HIV-1 transmission and a possible role of $\mathrm{Fc} \gamma \mathrm{R}$-mediated effector functions in modulating the infectiousness of an HIV-1 infected individual. The significance of these findings in the context of sexual transmission will need to be determined.
There are a number of limitations of the current study and areas that require further investigation. Due to the small sample size and number of comparisons performed it is likely that a number of associations are due to chance. However, since the adjustment for multiple comparisons eliminate type I errors at the cost of type 2 errors, we considered it more important to identify potential factors that may play a role in perinatal HIV-1 transmission rather than dismissing these leads as chance variations brought about by multiple comparisons. Nonetheless, when a Bonferroni correction is applied ($\alpha=0.0012$), the association with the maternal FcyRIIIa-F158V variant in the in utero-enriched transmitting group remains significant.

Conclusions

The maternal and infant immune mechanisms involved in modulating the risk of perinatal HIV-1 transmission and acquisition are complex and multifactorial. Using the approach of studying FcyR genetic variants as proxy for functional capability, this study has revealed the potential importance of $\mathrm{Fc} \gamma \mathrm{R}$-mediated immune mechanisms that likely involve FcyRIIIa-bearing immune cells and neutrophils. The findings of this study need to be validated in larger cohorts, in particular associations that did not retain significance following adjustment for multiple comparisons. Moreover, understanding the role of IgG Fc-mediated mechanisms requires an appreciation for

Table 6 Multivariate analysis adjusted FcyRIIIa-F158V

	Multivariate, not adjusted for FcyRIIIa-F158V	$\mathrm{P}_{\text {Bonf }}$	Multivariate analysis with adjustment for FcyRIIla-F158V genotype and allele carriage					
			F158V genotype	$\mathrm{P}_{\text {Bonf }}$	$\geq 1158 \mathrm{~F}$ allele	$\mathrm{P}_{\text {Bonf }}$	$\geq 1158 \mathrm{~V}$ allele	$\mathrm{P}_{\text {Bonf }}$
Maternal								
FCyRIIa (rs1801274)								
131RR genotype								
Total transmitting	$P=0.023$	ns	$\begin{gathered} 1.93 \text { (0.82-4.57), } \\ P=0.133 \end{gathered}$	ns	$\begin{gathered} 2.25(0.97-5.24) \\ P=0.133 \end{gathered}$	ns	$\begin{gathered} 2.08 \text { (0.89-4.86), } \\ P=0.091 \end{gathered}$	ns
In utero transmitting	$P=0.029$	ns	$\begin{aligned} & 9.37(1.01-87.22) \\ & P=0.049 \end{aligned}$	ns	$\begin{aligned} & 9.59(1.05-87.37) \\ & P=0.045 \end{aligned}$	ns	$\begin{gathered} 10.26(1.12-94.28) \\ P=0.040 \end{gathered}$	ns
In utero-enriched transmitting	$P=0.048$	ns	$\begin{gathered} 1.94 \text { (0.66-5.70), } \\ P=0.226 \end{gathered}$	ns	$\begin{aligned} & 2.60(0.90-7.52) \\ & P=0.077 \end{aligned}$	ns	$\begin{aligned} & 1.98 \text { (0.67-5.80) } \\ & P=0.214 \end{aligned}$	ns
$\geq 1131 \mathrm{H}$ allele								
In utero transmitting	$P=0.045$	ns	$\begin{gathered} 0.42 \text { (0.14-1.29), } \\ P=0.132 \end{gathered}$	ns	$\begin{gathered} 0.40(0.14-1.15) \\ P=0.088 \end{gathered}$	ns	$\begin{gathered} 0.39 \text { (0.13-1.18), } \\ P=0.096 \end{gathered}$	ns
$\geq 1131 \mathrm{R}$ allele								
Total transmitting	$P=0.049$	ns	$\begin{gathered} 1.80(0.84-3.85), \\ P=0.128 \end{gathered}$	ns	$\begin{aligned} & 1.90(0.89-4.05) \\ & P=0.095 \end{aligned}$	ns	$\begin{aligned} & 1.91 \text { (0.90-4.06), } \\ & P=0.091 \end{aligned}$	ns
FCYRIIb (rsi050501)								
232TT genotype								
Total transmitting	$P=0.030$	ns	$\begin{gathered} 2.06(0.78-5.41) \\ P=0.144 \end{gathered}$	ns	$\begin{gathered} 2.48 \text { (0.96-9.36), } \\ P=0.060 \end{gathered}$	ns	$\begin{gathered} 2.17 \text { (0.83-5.67), } \\ P=0.115 \end{gathered}$	ns
≥ 12321 allele								
Total transmitting	$P=0.043$	ns	$\begin{gathered} 0.49 \text { (0.20-1.20), } \\ P=0.118 \end{gathered}$	ns	$\begin{gathered} 0.43 \text { (0.18-1.05), } \\ P=0.063 \end{gathered}$	ns	$\begin{gathered} 0.48 \text { (0.20-1.18), } \\ P=0.110 \end{gathered}$	ns
FcyRIIIb								
≥ 1 HNA1b allotype								
Total transmitting	$P=0.014$	ns	$\begin{gathered} 2.26(1.22-4.17) \\ P=0.009 \end{gathered}$	ns	$\begin{aligned} & 2.19(1.20-4.02), \\ & P=0.011 \end{aligned}$	ns	$\begin{gathered} 2.21(1.20-4.11) \\ P=0.011 \end{gathered}$	ns
In utero-enriched transmitting	$P=0.031$	ns	$\begin{gathered} 2.43(1.15-5.16), \\ P=0.020 \end{gathered}$	ns	$\begin{gathered} 2.32(1.11-4.82), \\ P=0.025 \end{gathered}$	ns	$\begin{aligned} & 2.40(1.13-5.10), \\ & P=0.023 \end{aligned}$	ns
Infant								
FCyRIIIb								
HNA1a+/1b-/1cgenotype								
Total infected	$P=0.033$	ns	$\begin{gathered} 0.37(0.15-0.93) \\ P=0.034 \end{gathered}$	ns	$\begin{gathered} 0.37(0.15-0.91), \\ P=0.031 \end{gathered}$	ns	$\begin{gathered} 0.37(0.15-0.93) \\ P=0.034 \end{gathered}$	ns
Intrapartum infected	$P=0.044$	ns	$\begin{gathered} 0.20(0.04-0.96) \\ P=0.044 \end{gathered}$	ns	$\begin{gathered} 0.19(0.04-0.95), \\ P=0.043 \end{gathered}$	ns	$\begin{aligned} & 0.20(0.04-0.96) \\ & P=0.044 \end{aligned}$	ns
HNA1a+/1b+/1c+ genotype								
In utero-enriched infected	$P=0.032$	ns	$\begin{gathered} 5.67(1.39-23.11) \\ P=0.016 \end{gathered}$	ns	$\begin{aligned} & 4.47(1.13-17.64) \\ & P=0.032 \end{aligned}$	ns	$\begin{aligned} & 5.74(1.39-23.57) \\ & P=0.015 \end{aligned}$	ns
≥ 1 HNA1b allotype								
Total infected	$P=0.019$	ns	$\begin{gathered} 2.11(1.16-3.83) \\ P=0.014 \end{gathered}$	ns	$\begin{gathered} 2.04(1.12-3.69) \\ P=0.019 \end{gathered}$	ns	$\begin{gathered} 2.08(1.15-3.77), \\ P=0.016 \end{gathered}$	ns
In utero-enriched infected	$P=0.037$	ns	$\begin{gathered} 2.29(1.10-4.76) \\ P=0.026 \end{gathered}$	ns	$\begin{gathered} 2.22(1.07-4.58), \\ P=0.032 \end{gathered}$	ns	$\begin{gathered} 2.26(1.09-4.68), \\ P=0.028 \end{gathered}$	ns

P values less than 0.05 are indicated in italics
$P_{\text {Bonf }}$ Bonferroni corrected P value, $A O R$ adjusted odds ratio, CI confidence interval, VL viral load, bwt birth weight, $n s$ not statistically significant
-, the variable of interest was not detected in any of the cases and thus could not be analysed
the collective contribution of multiple components in addition to $\mathrm{Fc} \gamma \mathrm{R}$ genetic variants. These include factors
such as the magnitude and specificity of maternal HIV-1 specific antibodies, the efficiency of antibody transfer
across the placenta, immune cell phenotypes at the sites of HIV-1 exposure, and the impact of the overall immune environment and state of activation on maternal and infant immune responses.

Methods

Study populations
All study participants were Black South African individuals. Ethical clearance was obtained from the University of the Witwatersrand Human Research Ethics Committee and the Institutional Review Board of Columbia University. Written informed consent was obtained from all participants.

Cohort HIV-1 infection status

Maternal HIV-1 RNA levels were determined using the Roche Amplicor RNA Monitor assay version 1.5 (Roche Diagnostic Systems, Inc., Branchburg, New Jersey, USA). CD4 ${ }^{+}$T cell counts were determined using the FACSCount System from Becton-Dickinson (San Jose, CA, USA). Infant samples were tested for HIV-1 DNA using the Roche Amplicor Monitor version 1.5 qualitative PCR assay (Roche Diagnostic Systems).

FCGR gene copy number variability and nucleotide variant

 detectionGenomic DNA was extracted from EDTA anticoagulated blood samples using the QIAamp DNA Mini Kit (Qiagen, Dusseldorf, Germany). Functional FCGR variants were genotyped using the $F C G R$-specific multiplex ligation-dependent probe amplification (MLPA) assay (MRC Holland, Amsterdam, The Netherlands) according to manufacturer's instructions [19, 20]. The assay detects the genomic copy number of the FCGR2C, FCGR3A and FCGR3B genes and known functional allelic variants that include Fc γ RIIa-H131R; Fc γ RIIb-I232T, Fc γ RIIIa-F158V, FcyRIIIb-HNA1a|b|c, FCGR2C expression variants (p.X57Q and c.798+1A>G), and the FCGR2B/C promoter variants (c.-386G>C and c.-120T>A). Genotypes assigned to study participants according to the MLPA assay were confirmed on randomly selected samples with nucleotide sequencing or TaqMan ${ }^{\circledR}$ SNP Genotyping Assays (Thermofisher, Life Technologies, Foster City, USA).

Computational and statistical analysis

Univariate analyses were used to determine the association between $\mathrm{Fc} \gamma \mathrm{R}$ functional variants and perinatal HIV-1 transmission. Multivariate logistic regression was used to adjust for available confounders that were independently significantly associated with HIV-1 transmission i.e. viral load (all groups) and birth weight (in utero transmitting group) (Table 1). Due to high correlation
with viral load, CD4 T^{+}cell count was not included in the multivariate model. The t test was used to compare normally distributed continuous variables and the Fisher's exact test for categorical data. All analyses were performed in STATA version 10.1 (StataCorp LP, College Station, USA) and a P value of less than 0.05 was considered statistically significant. Adjustment for multiple comparisons was performed using the Bonferroni correction, which considered 42 independent tests-mothers and infants, three unrelated clinical subgroups, and seven loci ($F C G R 3 A$ gene copy number, FCGR3B gene copy number, Fc γ RIIa-H131R, Fc γ RIIb-I232T, Fc γ RIIIaF158V, Fc γ RIIIb-HNA1a|b|c, and overall $\mathrm{Fc} \gamma$ R variability profiles).
LD between pairs of biallelic loci was tested using an expectation-maximization likelihood-ratio test with 16 000 permutations (significance level <0.05) in Arlequin ver 3.5.2.2 [32]. LD coefficients (D^{\prime} and r^{2}) were determined in Haploview [33]. Only individuals bearing two copies of each low affinity FCGR gene were considered. LD with FcyRIIIb-HNA1a|b|c was assessed using two loci: rs448740 (p.N65S; as tag-variant) that differentiates HNA1a (p. 65 N) from HNA1b|c (p.65S) and rs5030738 (p.A78D) that differentiates HNA1a|b (p.78A) from HNA1c (p.78D).

Additional files

> Additional file 1: Table S1. Associations of maternal and infant FCGR3A and FCGR3B gene copy number with perinatal HIV-1 transmission. Univariate and multivariate analysis of associations of maternal and infant FCGR3A and FCGR3B gene copy number with perinatal HIV-1 transmission.
> Additional file 2: Table S2. Association of the FcyRIIIb-HNA1a homozygous genotype with perinatal HIV-1 acquisition when compared to other combinations of FcyRIIlb-HNA allotypes. Univariate and multivariate analysis of associations of the FcyRIIIb-HNA1a homozygous genotype with perinatal HIV-1 acquisition when compared to other combinations of FcyRIIIb-HNA allotypes.

Abbreviations

ADCC: antibody-dependent cellular cytotoxicity; ADCP: antibody-dependent cellular phagocytosis; AOR: adjusted odds ratio; CI: confidence interval; CNV: copy number variability; DNA: deoxyribonucleic acid; Fc: fragment, crystallisable; FcyR: Fc gamma receptors; HIV: human immunodeficiency virus; HNA: human neutrophil antigen; IgG: immunoglobulin G; MLPA: multiplex ligation-dependent probe amplification; PCR: polymerase chain reaction; RNA: ribonucleic acid; sdNVP: single dose nevirapine.

Authors' contributions

RL performed the researched and wrote the paper. AM and RL performed data analysis. GG recruited patients and acquired clinical data. LK contributed to the design of the study. CT designed the study and supervised the research. All co-authors critically revised the manuscript for intellectual content. All authors read and approved the manuscript.

Author details

${ }^{1}$ Centre for HIV and STIs, National Institute for Communicable Diseases (NHLS), Johannesburg, South Africa. ${ }^{2}$ Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. ${ }^{3}$ International Emerging Infections

Programme, South Africa Global Disease Detection Centre, Centers for Disease Control and Prevention (CDC), Pretoria, South Africa. ${ }^{4}$ Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, Soweto, South Africa. ${ }^{5}$ Gertrude H. Sergievsky Centre, College of Physicians and Surgeons, Columbia University, New York, NY, USA. ${ }^{6}$ Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.

Acknowledgements

The authors thank the study participants and Dorothy Southern for her review of the manuscript. This work is based on the research supported by grants from NICHD (HD 42402), the South African Medical Research Council and the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation. Ria Lassauniere is the recipient of bursaries from the South African National Research Foundation, the Poliomyelitis Research Foundation and a University of the Witwatersrand postgraduate merit award.

Disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Competing interests

The authors declare that they have no competing interests.
Received: 22 September 2015 Accepted: 1 June 2016
Published online: 10 June 2016

References

1. Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2008;8(1):34-47. doi:10.1038/nri2206.
2. Lewis GK. Role of Fc-mediated antibody function in protective immunity against HIV-1. Immunology. 2014;142(1):46-57.
3. Nimmerjahn F, Ravetch JV. Fc-receptors as regulators of immunity. Adv Immunol. 2007;96:179-204. doi:10.1016/s0065-2776(07)96005-8.
4. Breunis WB, van Mirre E, Geissler J, Laddach N, Wolbink G, van der Schoot E, et al. Copy number variation at the FCGR locus includes FCGR3A, FCGR2C and FCGR3B but not FCGR2A and FCGR2B. Hum Mutat. 2009;30(5):E640-50.
5. Willcocks LC, Lyons PA, Clatworthy MR, Robinson JI, Yang W, Newland SA, et al. Copy number of FCGR3B, which is associated with systemic lupus erythematosus, correlates with protein expression and immune complex uptake. J Exp Med. 2008;205(7):1573-82.
6. Warmerdam PA, van de Winkel JG, Gosselin EJ, Capel PJ. Molecular basis for a polymorphism of human Fc gamma receptor II (CD32). J Exp Med. 1990;172(1):19-25.
7. Wu J, Edberg JC, Redecha PB, Bansal V, Guyre PM, Coleman K, et al. A novel polymorphism of FcgammaRIIla (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest. 1997;100(5):1059-70.
8. Floto RA, Clatworthy MR, Heilbronn KR, Rosner DR, MacAry PA, Rankin A, et al. Loss of function of a lupus-associated FcgammaRIlb polymorphism through exclusion from lipid rafts. Nat Med. 2005;11(10):1056-8. doi:10.1038/nm1288.
9. Bux J, Stein EL, Bierling P, Fromont P, Clay M, Stroncek D, et al. Characterization of a new alloantigen (SH) on the human neutrophil Fc gamma receptor IIIb. Blood. 1997;89(3):1027-34.
10. Ory PA, Goldstein IM, Kwoh EE, Clarkson SB. Characterization of polymorphic forms of FC receptor III on human neutrophils. J Clin Invest. 1989;83(5):1676-81. doi:10.1172/JCI114067.
11. Metes D, Ernst LK, Chambers WH, Sulica A, Herberman RB, Morel PA. Expression of functional CD32 molecules on human NK cells is determined by an allelic polymorphism of the FcgammaRIIC gene. Blood. 1998;91(7):2369-80.
12. van der Heijden J, Breunis WB, Geissler J, de Boer M, van den Berg TK, Kuijpers TW. Phenotypic variation in IgG receptors by nonclassical FCGR2C alleles. J Immunol. 2012;188(3):1318-24. doi:10.4049/jimmunol.1003945.
13. Kuhn L, Schramm DB, Donninger S, Meddows-Taylor S, Coovadia AH, Sherman GG, et al. African infants' CCL3 gene copies influence
perinatal HIV transmission in the absence of maternal nevirapine. AIDS. 2007;21(13):1753-61. doi:10.1097/QAD.0b013e3282ba553a.
14. Forbes JC, Alimenti AM, Singer J, Brophy JC, Bitnun A, Samson LM, et al. A national review of vertical HIV transmission. AIDS. 2012;26(6):757-63. doi:10.1097/QAD.0b013e328350995c.
15. Guay LA, Musoke P, Fleming T, Bagenda D, Allen M, Nakabiito C, et al. Intrapartum and neonatal single-dose nevirapine compared with zidovudine for prevention of mother-to-child transmission of HIV-1 in Kampala, Uganda: HIVNET 012 randomised trial. Lancet. 1999;354(9181):795-802. doi:10.1016/s0140-6736(99)80008-7.
16. Townsend CL, Cortina-Borja M, Peckham CS, de Ruiter A, Lyall H, Tookey PA. Low rates of mother-to-child transmission of HIV following effective pregnancy interventions in the United Kingdom and Ireland, 2000-2006. AIDS. 2008;22(8):973-81. doi:10.1097/QAD.0b013e3282f9b67a.
17. Lassauniere R, Tiemessen CT. Variability at the FCGR locus: characterization in Black South Africans and evidence for ethnic variation in and out of Africa. Genes Immun. 2015;. doi:10.1038/gene.2015.60.
18. Gillis C, Gouel-Cheron A, Jonsson F, Bruhns P. Contribution of human FcgammaRs to disease with evidence from human polymorphisms and transgenic animal studies. Front Immunol. 2014;5:254. doi:10.3389/ fimmu.2014.00254.
19. Ditzian-Kadanoff R, Garon J, Verp MS, Zilberstein M. Gamma delta T cells in human decidua. Am J Obstet Gynecol. 1993;168(3 Pt 1):831-6.
20. Williams PJ, Searle RF, Robson SC, Innes BA, Bulmer JN. Decidual leucocyte populations in early to late gestation normal human pregnancy. J Reprod Immunol. 2009;82(1):24-31. doi:10.1016/j.jri.2009.08.001.
21. Siewiera J, El Costa H, Tabiasco J, Berrebi A, Cartron G, Le Bouteiller P, et al Human cytomegalovirus infection elicits new decidual natural killer cell effector functions. PLoS Pathog. 2013;9(4):e1003257. doi:10.1371/journal. ppat. 1003257.
22. Giugliano S, Petroff MG, Warren BD, Jasti S, Linscheid C, Ward A, et al. Hepatitis C virus sensing by human trophoblasts induces innate immune responses and recruitment of maternal NK Cells: potential implications for limiting vertical transmission. J Immunol. 2015;195(8):3737-47. doi:10.4049/jimmunol. 1500409.
23. Milligan C, Overbaugh J. The role of cell-associated virus in mother-to-child HIV transmission. J Infect Dis. 2014;210(Suppl 3):S631-40. doi:10.1093/infdis/jiu344.
24. Bruhns P, lannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, et al. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood. 2009;113(16):3716-25. doi:10.1182/blood-2008-09-179754.
25. Ory PA, Clark MR, Kwoh EE, Clarkson SB, Goldstein IM. Sequences of complementary DNAs that encode the NA1 and NA2 forms of Fc receptor III on human neutrophils. J Clin Invest. 1989;84:1688-91.
26. Ravetch JV, Perussia B. Alternative membrane forms of Fc gamma RIII(CD16) on human natural killer cells and neutrophils. Cell type-specific expression of two genes that differ in single nucleotide substitutions. J Exp Med. 1989;170(2):481-97.
27. Bredius RG, Fijen CA, De Haas M, Kuijper EJ, Weening RS, Van de Winkel JG, et al. Role of neutrophil Fc gamma Rlla (CD32) and Fc gamma Rlllb (CD16) polymorphic forms in phagocytosis of human $\operatorname{lgG} 1$ - and $\operatorname{lgG} 3-$ opsonized bacteria and erythrocytes. Immunology. 1994;83(4):624-30.
28. Salmon JE, Edberg JC, Kimberly RP. Fc gamma receptor III on human neutrophils. Allelic variants have functionally distinct capacities. J Clin Invest. 1990;85(4):1287-95.
29. Brouwer KC, Lal RB, Mirel LB, Yang C, van Eijk AM, Ayisi J, et al. Polymorphism of Fc receptor lla for IgG in infants is associated with susceptibility to perinatal HIV-1 infection. AIDS. 2004;18(8):1187-94.
30. Aldrovandi GM, Kuhn L. What infants and breasts can teach us about natural protection from HIV infection. J Infect Dis. 2010;202(Suppl 3):S366-70. doi:10.1086/655972.
31. Braibant M, Barin F. The role of neutralizing antibodies in prevention of HIV-1 infection: what can we learn from the mother-to-child transmission context? Retrovirology. 2013;10:103. doi:10.1186/1742-4690-10-103.
32. Excoffier L, Slatkin M. Incorporating genotypes of relatives into a test of linkage disequilibrium. Am J Hum Genet. 1998;62(1):171-80. doi:10.1086/301674.
33. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21 (2):263-5. doi:10.1093/ bioinformatics/bth457.

[^0]: *Correspondence: carolinet@nicd.ac.za
 ${ }^{1}$ Centre for HIV and STIs, National Institute for Communicable Diseases (NHLS), Johannesburg, South Africa
 Full list of author information is available at the end of the article

