97 research outputs found

    Young hands, old books: : Drawings by children in a fourteenth-century manuscript, LJS MS. 361

    Get PDF
    This article scrutinises three marginal drawings in LJS 361, Kislak Center for Special Collections, Rare Books and Manuscripts, University of Pennsylvania Libraries. It first considers the provenance of the manuscript, questioning how it got into the hands of children. Then, it combines developmental psychology with close examination of the material evidence to develop a list of criteria to attribute the drawings to children. There is consideration of the features that help us estimate the age of the artists, and which indicate that one drawing was a collaborative effort between two children. A potential relationship is identified between the doodles and the subject matter of the text, prompting questions about pre-modern child education and literacy. Finally, the article considers the implications of this finding in both codicology and social history since these marginal illustrations demonstrate that children were active in the material life of medieval books

    The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants

    Get PDF
    Vascular plants appeared ~410 million years ago then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes (1). We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first non-seed vascular plant genome reported. By comparing gene content in evolutionary diverse taxa, we found that the transition from a gametophyte- to sporophyte- dominated life cycle required far fewer new genes than the transition from a non-seed vascular to a flowering plant, while secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in post- transcriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the tasiRNA pathway and extensive RNA editing of organellar genes

    Comparison of printed glycan array, suspension array and ELISA in the detection of human anti-glycan antibodies

    Get PDF
    Anti-glycan antibodies represent a vast and yet insufficiently investigated subpopulation of naturally occurring and adaptive antibodies in humans. Recently, a variety of glycan-based microarrays emerged, allowing high-throughput profiling of a large repertoire of antibodies. As there are no direct approaches for comparison and evaluation of multi-glycan assays we compared three glycan-based immunoassays, namely printed glycan array (PGA), fluorescent microsphere-based suspension array (SA) and ELISA for their efficacy and selectivity in profiling anti-glycan antibodies in a cohort of 48 patients with and without ovarian cancer. The ABO blood group glycan antigens were selected as well recognized ligands for sensitivity and specificity assessments. As another ligand we selected P1, a member of the P blood group system recently identified by PGA as a potential ovarian cancer biomarker. All three glyco-immunoassays reflected the known ABO blood groups with high performance. In contrast, anti-P1 antibody binding profiles displayed much lower concordance. Whilst anti-P1 antibody levels between benign controls and ovarian cancer patients were significantly discriminated using PGA (p = 0.004), we got only similar results using SA (p = 0.03) but not for ELISA. Our findings demonstrate that whilst assays were largely positively correlated, each presents unique characteristic features and should be validated by an independent patient cohort rather than another array technique. The variety between methods presumably reflects the differences in glycan presentation and the antigen/antibody ratio, assay conditions and detection technique. This indicates that the glycan-antibody interaction of interest has to guide the assay selection

    Integrating education for sustainable development into a higher education institution: beginning the journey

    Get PDF
    Much of the current literature on integrating sustainability into HEIs is focussed on why HEIs should embrace sustainable development (SD) and what is still missing or hindering work and the integration of efforts. There is much less exploration of how SD has been interpreted at the individual HEI level and action taken as a result. This case study reflects on important elements of the journey Nottingham Trent University (NTU) in the UK has taken to integrate sustainability, focussing on key decisions and activity in 2009/10. In highlighting this, the authors seek to empower those looking to support and/or lead the embedding of Education for Sustainable Development (ESD), separately or as part of an integrated effort, in their own institution. Today in 2019, NTU is a global leader in integrating ESD as part of a wider SD agenda. The work which this paper presents, to understand and establish a baseline of key elements of NTU’s existing ESD activity and systems, was an important turning point. Activities undertaken to review and assess ‘where are we now?’, primarily through an institution-wide survey in 2009/10, led to important insights and supported dialogue, as well as the connection and underpinning of core administrative elements of the NTU SD framework and systems. Further recommendations are given in the final section of this paper on other drivers that can help to embed ESD within an HEI

    The Glycosyltransferase Repertoire of the Spikemoss Selaginella moellendorffii and a Comparative Study of Its Cell Wall

    Get PDF
    Spike mosses are among the most basal vascular plants, and one species, Selaginella moellendorffii, was recently selected for full genome sequencing by the Joint Genome Institute (JGI). Glycosyltransferases (GTs) are involved in many aspects of a plant life, including cell wall biosynthesis, protein glycosylation, primary and secondary metabolism. Here, we present a comparative study of the S. moellendorffii genome across 92 GT families and an additional family (DUF266) likely to include GTs. The study encompasses the moss Physcomitrella patens, a non-vascular land plant, while rice and Arabidopsis represent commelinid and non-commelinid seed plants. Analysis of the subset of GT-families particularly relevant to cell wall polysaccharide biosynthesis was complemented by a detailed analysis of S. moellendorffii cell walls. The S. moellendorffii cell wall contains many of the same components as seed plant cell walls, but appears to differ somewhat in its detailed architecture. The S. moellendorffii genome encodes fewer GTs (287 GTs including DUF266s) than the reference genomes. In a few families, notably GT51 and GT78, S. moellendorffii GTs have no higher plant orthologs, but in most families S. moellendorffii GTs have clear orthologies with Arabidopsis and rice. A gene naming convention of GTs is proposed which takes orthologies and GT-family membership into account. The evolutionary significance of apparently modern and ancient traits in S. moellendorffii is discussed, as is its use as a reference organism for functional annotation of GTs

    Using graph theory to analyze biological networks

    Get PDF
    Understanding complex systems often requires a bottom-up analysis towards a systems biology approach. The need to investigate a system, not only as individual components but as a whole, emerges. This can be done by examining the elementary constituents individually and then how these are connected. The myriad components of a system and their interactions are best characterized as networks and they are mainly represented as graphs where thousands of nodes are connected with thousands of vertices. In this article we demonstrate approaches, models and methods from the graph theory universe and we discuss ways in which they can be used to reveal hidden properties and features of a network. This network profiling combined with knowledge extraction will help us to better understand the biological significance of the system
    • 

    corecore