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Abstract

Mechanical stimulation, including exposure to wind, is a common environmental

variable for plants. However, knowledge about the morphogenetic response of the

grasses (Poaceae) to mechanical stimulation and impact on relevant agronomic traits

is very limited. Two natural accessions of Brachypodium distachyon were exposed to

wind and mechanical treatments. We surveyed a wide range of stem-related traits to

determine the effect of the two treatments on plant growth, development, and stem

biomass properties. Both treatments induced significant quantitative changes across

multiple scales, from the whole plant down to cellular level. The two treatments

resulted in shorter stems, reduced biomass, increased tissue rigidity, delayed

flowering, and reduced seed yield in both accessions. Among changes in cell wall-

related features, a substantial increase in lignin content and pectin methylesterase

activity was most notable. Mechanical stimulation also reduced the enzymatic sugar

release from the cell wall, thus increasing biomass recalcitrance. Notably, treatments

had a distinct and opposite effect on vascular bundle area in the two accessions,

suggesting genetic variation in modulating these responses to mechanical stimulation.

Our findings highlight that exposure of grasses to mechanical stimulation is a relevant

environmental factor affecting multiple traits important for their utilization in food,

feed, and bioenergy applications.
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biomass, Brachypodium distachyon, cell wall, fitness, grasses, growth and development,
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1 | INTRODUCTION

The grasses (Poaceae or Gramineae) are considered one of the most

economically important plant families. Grasses are widely cultivated

for their grains and provide a large part of the diet for most people on

Earth (Peterson, 2013), exemplified by the fact that three domesti-

cated cereal crops—rice, wheat, and maize—provide more than half of

all calories eaten by humans (Awika, 2011). Forage grasses, such as

the temperate species Festuca and Lolium, also provide the feed base

for many grazing livestock, therefore contributing to the production

of meat and milk (Boval & Dixon, 2012). More recently, grasses have

been explored as biomass feedstocks for bioenergy production and

biorefining into platform chemicals and value-added bio-based prod-

ucts. The main feedstocks explored to date are agricultural residues

(including corn stover, rice, and wheat straw) and the harvestable

biomass of dedicated perennial biomass crops including Miscanthus

and switchgrass (Panicum virgatum; Bhatia, Gallagher, Gomez, &

Bosch, 2017).
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Given their importance for food, feed, and bioenergy, the grasses

represent a key factor when dealing with the three interconnected

challenges of food security, climate change, and energy security that

we face in the 21st century (Karp & Richter, 2011). Climate change is

predicted to adversely impact the agricultural production of grass

crops, with major projected yield loss risks associated with increases

in drought and temperature (Leng & Hall, 2019). As a result, a substan-

tial body of research is focused on studying the effect of drought and

temperature on agronomic traits of cereals such as rice and wheat

(Eyshi, Webber, Gaiser, Naab, & Ewert, 2015; Lesk, Rowhani, &

Ramankutty, 2016).

Of the different environmental factors that grasses can experi-

ence, their exposure to wind is often overlooked. For Europe, cli-

mate model simulations based on a global temperature increase of

1.5�C above pre-industrial levels predict an increase in surface winds

over the United Kingdom and Northern Europe and a reduction over

Southern Europe (Hosking et al., 2018). Modelling of climate vari-

ables and agricultural data from China has shown that an average

increase of wind speed by 1 m s−1 decreases the yield of rice and

wheat by respectively 14.5% and 13.9%, and omitting wind speed is

therefore likely to underestimate the cost of climate change (Zheng

et al., 2017). Most studies in grasses have focussed on lodging (per-

manent displacement of stems from the vertical), a complex phe-

nomenon in which high-velocity wind plays a major role. Lodging is a

major limiting factor for grain production in cereals worldwide, and

resistance to lodging is, therefore, a key trait for crop improvement

(Baker, Sterling, & Berry, 2014; Reynolds, 2007). A conservative esti-

mate for the United Kingdom is that lodging can result in financial

losses of £170 M during a severe lodging year (£50 M on average)

due to yield loss, reduced quality, and greater grain drying costs

(Berry et al., 2004; Berry & Spink, 2012).

Surprisingly, few studies have examined the effect of milder mechan-

ical stimulation on the growth and development of grasses. Mechanical

stimulation, generated by flexure caused by wind or by direct interactions

with animals, neighbouring plants, and rain, is a frequent event in a plants'

life. Plants have evolved response mechanisms to protect themselves

from potential damage caused by these factors (Biddington, 1986;

Bossdorf & Pigliucci, 2009). Developmental and growth responses to

mechanical stimulation have been termed thigmomorphogenesis (thigma

means “touch” in Greek; Jaffe, 1973). These morphogenetic changes can

occur slowly over time and are, therefore, often not readily apparent;

however, these responses can be quite dramatic (Braam, 2005). The most

common features of thigmomorphogenesis are a decrease in shoot elon-

gation and a general reduction in size, thereby decreasing above-

ground biomass and yield. Usually, leaves become smaller and

thinner, and plants seem to allocate more biomass into roots than

shoots, though a recent study found that mechanical stimulation

increased stem biomass in hybrid poplar trees whereas root and leaf

biomass were not affected (Niez, Dlouha, Moulia, & Badel, 2019). In

addition, changes in other morphological traits such as stem diame-

ter, tillering, and flowering time have been reported (for reviews, see

Biddington, 1986; Lee, Polisensky, & Braam, 2005; Gardiner, Berry, &

Moulia, 2016; Börnke & Rocksch, 2018).

From an evolutionary point of view, thigmomorphogenesis is

likely to have evolved as an adaptation for plants to survive in the

windy environment and to cope with other forms of mechanical stress

(Jaffe, Leopold, & Staples, 2002; Pigliucci, 2002). As with most envi-

ronmental stresses, the nature and extend of the response depends

on the species or variety, as well as the physiological stage of the

plant when it is stimulated (Jaffe, 1973). Moreover, responses can dif-

fer even within species (Bossdorf & Pigliucci, 2009; Emery, Reid, &

Chinnappa, 1994).

Most of our knowledge about thigmomorphogenesis is based on

studies of dicotyledonous plants with little effort devoted to the grasses.

Expression studies in Arabidopsis have shown that genes encoding cell

wall-associated proteins are enriched in response to mechanical stimula-

tion (Lee et al., 2005), suggesting that changes in cell wall composition

and architecture are involved in thigmomorphogenesis. A recent work

reported that mechanical perturbations affect cell wall properties in trees

(Roignant et al., 2018) and cell wall-related traits play an important role

in lodging resistance of rice (Fan et al., 2018; Li, Liu, Xu, & Xu, 2018;

Ookawa et al., 2014) and wheat (Zheng et al., 2017). However, few stud-

ies have looked at cell wall-related changes induced by more moderate

wind and/or mechanical treatments (MTs).

Plant cell walls are highly dynamic and complex cellular structures

supporting plant growth, development, physiology, and adaptation.

Cell walls can constitute up to 60–70% of the plant biomass based on

dry matter yield. The structure and composition of cell walls in grasses

differ significantly from cell walls of dicots. The main components are

cellulose microfibrils embedded in a matrix of mostly hemicellulosic

polysaccharides, and lignin. Pectin only represents a minor component

of the cell walls in grasses. In addition, grass cell walls are characterized

by the presence of the two hydroxycinnamic acids (HCAs), ferulic acid

(FA), and p-coumaric acid (p-CA; Bhatia et al., 2017; Hatfield, Rancour, &

Marita, 2017; McCann & Carpita, 2008). The abundance and organiza-

tion of the different cell wall components differ depending on develop-

mental stage, organ type, and cell type (da Costa et al., 2017; Hatfield

et al., 2017). As the cell wall plays an important role in the adaptation

of plants to changing environmental conditions (Le Gall et al., 2015)

and cell wall-related traits are a primary determinant for the quality of

forages (Jung & Allen, 1995) and biomass quality for biorefining

(da Costa et al., 2019), it is important to assess the impact of mechani-

cal stimulation on the cell wall properties of grasses.

Here, we show the impact of wind and MT on the growth and

development of Brachypodium distachyon (Brachypodium), a model

plant for cereal crops and forage and bioenergy grasses (Brutnell,

Bennetzen, & Vogel, 2015; Scholthof, Irigoyen, Catalan, & Mandadi,

2018). We used two Brachypodium accessions, with geographically

diverse origins, and two treatments (wind and MT) to evaluate both

genotypic and treatment-specific responses. Our results show that

exposure to wind and MTs induces significant morphological changes,

delays flowering, and reduces seed yield. Mechanical stimulation

increases the rigidity of Brachypodium stem tissues and reduces enzy-

matic sugar release from stem material. In addition, changes in stem

anatomical and cell wall-related features that impact stem properties

vary in different accessions, indicating Brachypodium may be a
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suitable system to genetically dissect these processes. These findings

highlight that exposure of grasses to mechanical stimulation is a rele-

vant environmental factor with important implications for their fitness

and their utilization in food, feed, and bioenergy applications.

2 | MATERIALS AND METHODS

2.1 | Plant cultivation

B. distachyon Bd21 and ABR6 seeds were sown in 6-cm diameter pots

with a mixture of 20% grit sand and 80% Levington F2 compost and

germinated in controlled greenhouse conditions: 21�C, 16 hr of light

(natural light supplemented with light from 400-W sodium lamps).

Vernalization was initiated 14 days after germination and lasted for

7 weeks, with 16-hr day length at 5�C. After vernalization, plants

were grown in the greenhouse with conditions as mentioned above.

Plants at the same developmental stage (three tillers) were selected

for stress experiments, with 20 biological replicates for each

treatment.

2.2 | Stress induction

For wind treatment (WT), plants were placed in front of a velocity fan

(Advent, AVAC 18×) at a mean distance of 1.5 m where the wind

speed reaches 2–3 m s−1 as measured with an anemometer (Omega,

model HHF11A). In the natural environment, the average wind speed

10–20 cm above the ground is 2–3 m s−1 (Bossdorf & Pigliucci, 2009),

relevant to small plants like B. distachyon. The wind exposure time

was 8 hr day−1 (8 a.m. until 4 p.m.), and plants were rotated 180�

daily.

For MT, plants were flexed twice a day for 3 min (first at 8 a.m.

and second at 6 p.m.) at three quarters of the mean plant height by

the rapid front to back movement of a stick all-around each stem.

Each treatment consisted of 40 flexures, so at the end of the day,

plants were flexed 80 times—40 times in each direction.

Control plants were kept in calm conditions, without fan-induced

air movement or MT.

Bd21 treatments were initiated 1 day after the vernalization pro-

cess, whereas the treatments for ABR6 were initiated 3 weeks after

the vernalization process. The reason for this was to synchronize the

developmental stage between the two accessions at the start of

the treatments: stem elongation in ABR6 only started 3 weeks after

the transfer from the cold room to the greenhouse environment,

whereas Bd21 stem elongation began immediately after the vernaliza-

tion process.

2.3 | Phenotypic observations

Plant growth and development parameters were taken every 2 days.

At the end of the experiment (after 14 days), more detailed

measurements were taken, including for tiller number (main stem and

tillers), node and leaf number, stem length, internode length, and stem

diameter. Flowering time was assessed from the first day of the treat-

ments. Additionally, five plants per treatment for both accessions

were left to reach full maturity, and measurements were taken for

aboveground biomass yield (based on dry weight after oven drying to

constant mass at 70�C) and seed related parameters. Average single

seed weight was calculated from the weight of five seeds from each

replicate plant (n = 5). Seeds were harvested from basal florets of

spikelets from the main tiller, and the lemma and palea were removed

before weighing. For seed yield and total seed number, all seeds from

the plant were collected (n = 5). Seed-based measurements were

based on Boden et al. (2013).

2.4 | Anatomical and morphological measurements

Anatomical and morphological measurements on cross sections of the

second internode were carried out according to Matos, Whitney, Har-

rington, and Hazen (2013) with minor modifications. Relative cross-

sectional areas were determined for the following features: epidermis,

cortex, interfascicular region, pith, and vascular bundles (VBs; inner,

outer, and total; these were also counted). Fiji software (Schindelin

et al., 2012) was used to analyse images by measuring various

selected areas of interest (Figure S1). Additionally, measurements for

cell size and cell wall thickness were taken (n = 3 plants for each treat-

ment) of the first four rows of cells above the bundle sheath of a VB

(five cells per row; Figure S2).

2.5 | Histochemical staining of lignin

Transverse stem cross sections of the second internode were hand-

cut with a razor blade and stained with 5% (w/v) phloroglucinol in

75% EtOH for 5 min in darkness. The stained sections were flooded

with a few drops of 12 N HCl and mounted on glass slides with 30%

glycerol. Samples were immediately observed on a Leica LMD6000

microscope and images were captured.

2.6 | Cell wall residue preparation

For compositional analysis, stem material from five plants per each

treatment (both accessions) was harvested and pooled. Material from

three independent experiments was used as biological replicates. For

enzyme-linked immunosorbent assays (ELISAs) stem material from

three plants per treatment from one independent experiment was

pooled. Lignocellulosic biomass was prepared according to the NREL

LAP “Preparation of samples for compositional analysis” (Hames et al.,

2008). Biomass material was then fractionated to an alcohol insoluble

residue (AIR) according to Foster, Martin, and Pauly (2010) and da

Costa et al. (2014) with some modifications (see Methods S1 for a

detailed description).
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2.7 | Acetyl bromide soluble lignin content

Acetyl bromide soluble lignin content was determined in triplicate fol-

lowing the procedure as described by da Costa et al. (2014) with some

modifications (see Methods S1 for a detailed description).

2.8 | Determination of monosaccharide content

Monosaccharide composition of AIR samples was based on the proce-

dure described by Sluiter et al. (2012). All samples were analysed in

duplicates (see Methods S1 for a detailed description).

2.9 | Enzymatic cell wall hydrolysis

An enzyme cocktail consisting of Celluclast (NS 50013; cellulase) and

Novozyme 188 (NS 50010; β-glucosidase) was added to 10 mg of AIR

at a 4:1 ratio. Per sample, 997 μl of KOAc buffer at 0.025 M (pH = 5.6),

2.4 μl of Celluclast, and 0.6 μl of Novozyme 188, with 0.04% (w/v)

sodium azide, were used. Samples were incubated for 48 hr in a shak-

ing incubator set at 50�C and 150 rpm and diluted by adding 9 ml of

deionized water (1:10), centrifuged, and the supernatant was col-

lected. Samples were further diluted by taking 100 μl of 1:10 diluted

samples and adding 900 μl of distilled water. Before analysis, 400 μl

of diluted samples was transferred into 0.45 μm nylon filter vials

(Thomson, SINGLE StEP) and analysed by HPAEC-PAD on an ICS-

5000 ion chromatography system using the same conditions as

described for the “Determination of monosaccharide content,” (see

Methods S1). From the amount of enzymatically released

monosaccharides and the total amount of monosaccharides contained

within the cell wall, the percentage of enzymatically released mono-

saccharides was calculated. All samples were analysed in duplicates.

2.10 | Determination of cell wall
hydroxycinnamoyl esters

The amount of the HCA derivatives p-CA and FA in AIR was deter-

mined by using an alkaline saponification method as described by

Buanafina, Langdon, Hauck, Dalton, and Morris (2006) with some

modifications (see Methods S1 for a detailed description).

2.11 | Enzyme-linked immunosorbent assay

For ELISAs, carbohydrates were extracted in triplicate from AIR based

on the protocol described by Pattathil et al. (2010) and Pattathil, Avci,

Miller, and Hahn (2012) with modifications (see Methods S1, “Extrac-

tion and estimation of carbohydrates for ELISAs”). ELISAs were per-

formed following the protocol of Willats, Steele-King, Marcus, and

Knox (2002) with some modifications (see Methods S1 for a detailed

description). Table 1 shows a list of the cell wall-related monoclonal

antibodies used in this study.

2.12 | Measurement of mechanical properties

Three-point bending tests were performed on stem sections (2.5 cm

long and a diameter of 0.7–1 mm), cut from the middle of the second

TABLE 1 Cell wall directed monoclonal antibodies used in this study

Antibody Specificity References

Pectin related

LM5 (1 ! 4)-β-D-galactans (Jones et al., 1997)

LM6 (1 ! 5)-α-L-arabinans (Willats, Marcus, & Knox, 1998)

LM13 Linearized (1 ! 5)-α-L-arabinan (Moller et al., 2008)

LM19 Unesterified homogalacturonan (Verhertbruggen et al., 2009)

LM20 Methyl-esterified homogalacturonan (Verhertbruggen et al., 2009)

JIM7 Partially methyl-esterified homogalacturonan (Knox, Linstead, King, Cooper, & Roberts, 1990)

Hemicellulose related

LM25 XXXG/galactosylated xyloglucan (Pedersen et al., 2012)

LM28 Glucuronoxylan (Cornuault et al., 2015)

LM10 (1 ! 4)-β-D-xylan (McCartney, Marcus, & Knox, 2005)

Glycoprotein related

LM1 Extensin (Smallwood, Martin, & Knox, 1995)

LM2 β-Linked-GlcA in arabinogalactan protein glycan (Yates et al., 1996)

Other

LM12 Feruloylated polymers (Pedersen et al., 2012)
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and third internodes of fully mature plants (n = 5) and from the second

internode collected from plants immediate after the treatments

(n = 10). Tests followed the procedure as described by Anten, von

Wettberg, Pawlowski, and Huber (2009) and Jin, Fourcaud, Li, and

Guo (2009) with some modifications (see Methods S1 for a detailed

description) using a mechanical texture analyser (TA.XT plus, Stable

Micro Systems).

2.13 | Gel diffusion assays to determine pectin
methylesterase activity

Proteins were extracted from leaves and stem material as described

by Pinzon-Latorre and Deyholos (2014), and pectin methylesterase

(PME) activity was quantified by radial diffusion assays as described

by Downie et al. (1998), with modifications (see Methods S1 for a

detailed description).

3 | RESULTS

3.1 | Mechanical stimulation induces changes in
plant growth and development

To evaluate the response of two Brachypodium accessions, Bd21

from Iraq and ABR6 from Spain (Bettgenhaeuser et al., 2017), to

mechanical stimulation, vernalized plants were exposed for

2 weeks to either WT or MT. The phenotypic response of the two

natural accessions to WT and MT showed the same general pattern

(Table 2).

Both treatments resulted in a significant shortening of the main

stem (P ≤ .05) in the two accessions. For Bd21, WT and MT reduced

the length of the main stem to less than half that of untreated control

plants (Table 2 and Figure 1), whereas the reduction in stem length for

ABR6 compared with control was 48% after WT and 42% after MT

(Table 2 and Figure 1). These reductions in stem length were attrib-

uted to smaller individual internodes (Table S1) with the total number

of internodes not being affected (P = .067 and P = .112 for node num-

ber in Bd21 and ABR6, respectively). Significant shortening (P ≤ .05)

was observed for internodes 3–5 (IN3–5) in Bd21 after both

stresses, whereas no significant changes were noted for the first

(IN1, P = .181) and second (IN2, P = .082) internode. For ABR6, all

internodes after both treatments were significantly (P ≤ .05)

reduced in length compared with those of control plants (Table S1).

Both treatments also resulted in a significant reduction (P ≤ .05) of

the aboveground biomass for the two accessions (Table 2). For

Bd21, the biomass yield was reduced by 45% and 40% upon WT

and MT, respectively, whereas for ABR6, the reduction in above-

ground biomass was 35% (WT) and 21% (MT) compared with con-

trol plants. Mechanical stimulation had no effect on tiller number in

Bd21 (P = .580) and ABR6 (P = .899), and number of leaves (Bd21,

P = .167; ABR6, P = .641). No consistent differences in stem diame-

ter were found in either accession after mechanical stimulation

(data not shown).

3.2 | Mechanical stimulation affects flowering time
and seed yield

Flowering time was significantly affected by the two treatments in

both accessions. The time till flowering was significantly delayed

by, on average, 3 days in Bd21 and 4 days in ABR6 after both

stress treatments (WT and MT; Table 3). Fitness was also signifi-

cantly affected by both treatments in both accessions: Total seed

yield was most strongly affected by WT, with a reduction of 22%

in Bd21 and 38% in ABR6, whereas MT reduced the total seed

yield by 10% and 18% in Bd21 and ABR6, respectively. The total

number of seeds was also significantly reduced after both treat-

ments, again with WT causing the strongest reduction in number,

respectively 13% and 24% in Bd21 and ABR6 compared with con-

trol plants (Table 3). The reduction in seed number after MT was

7% and 5% for Bd21 and ABR6, respectively. In addition to a

reduction in overall seed yield and number, the average weight of

single seeds was reduced. For Bd21, only WT caused a significant

TABLE 2 Alterations in phenotypic traits observed after WT and MT in Bd21 and ABR6 plants

Bd21 ABR6

Trait Control WT MT Control WT MT

Tiller number 3.25 ± 0.49 3.15 ± 0.48 3.1 ± 0.43 6.5 ± 1.19 6.3 ± 1.53 6.45 ± 1.41

Node number (per main stem) 5.25 ± 0.43 5.2 ± 0.4 5.3 ± 0.55 5.9 ± 0.3 5.8 ± 0.41 5.9 ± 0.2

Leaf number (per plant) 13.95 ± 2.67 12.85 ± 1.9 12.95 ± 1.63 45.15 ± 6.2 45.85 ± 8.36 47.35 ± 7.79

Main stem length (cm) 30.15 ± 1.88 12.93 ± 0.67a 13.41 ± 1.04a 34.43 ± 1.09 17.73 ± 1.19a 19.97 ± 0.98a

Aboveground mass (g) 0.371 ± 0.022 0.203 ± 0.014a 0.224 ± 0.011a 0.655 ± 0.022 0.429 ± 0.013a 0.515 ± 0.008a, b

Note: Numbers represent averages ± SD with n = 20 for stem length, tiller, node, and leaf number and n = 5 for aboveground biomass (dry weight). ANOVA

with a post hoc Tukey test was performed to identify statistical differences (P ≤ .05).

Abbreviations: ANOVA, analysis of variance; MT, mechanical treatment; WT, wind treatment.
aSignificant difference from control.
bSignificant difference between WT and MT.

THIGMOMORPHOGENESIS IN BRACHYPODIUM DISTACHYON 5



(10%) reduction in average single seed weight, and this measure

was significantly reduced in ABR6 for both treatments (17% and

13% reduction for WT and MT, respectively). Together, these

results indicate that mechanical stimulation delays flowering and

reduces seed yield, the latter being related to lower measures in

seed number and seed weight.

F IGURE 1 Representative images of Bd21 and ABR6 plants after the three treatments (control, wind treatment [WT], and mechanical
treatment [MT]). Scale bar = 6 cm

TABLE 3 Flowering and seed related traits observed after WT and MT in Bd21 and ABR6 plants

Bd21 ABR6

Trait Control WT MT Control WT MT

Seed weight (mg) 3.74 ± 0.03 3.36 ± 0.02a,b 3.61 ± 0.02b 3.44 ± 0.02 2.85 ± 0.02a,b 2.99 ± 0.03a,b

Seed number 57.6 ± 2.3 50.2 ± 1.2a 53.8 ± 2.2a 161.8 ± 5.4 123.2 ± 2.9a,b 153.6 ± 3.4a,b

Seed yield (g) 0.215 ± 0.008 0.168 ± 0.004a,b 0.194 ± 0.009a,b 0.559 ± 0.023 0.349 ± 0.006a,b 0.459 ± 0.011a,b

Flowering time (days) 6.4 ± 0.82 9.5 ± 0.89a,b 9.6 ± 0.82a,b 8.2 ± 0.62 11.9 ± 1.02a,b 12.2 ± 1.11a,b

Note: Flowering time was counted from the first day of the treatments. Numbers represent averages ± SD with n = 20 for flowering time and n = 5 for

seed yield, weight, and number. ANOVA with a post hoc Tukey test was performed to identify statistical differences (P ≤ .05).

Abbreviations: ANOVA, analysis of variance; MT, mechanical treatment; WT, wind treatment.
aSignificant difference from control.
bSignificant difference between WT and MT.
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3.3 | Mechanical stimulation induces changes in
stem anatomical features

Stem cross sections were analysed to determine if mechanical stimu-

lation also induced changes at the tissue and cellular levels (Table 4

and Figures S1 and S3). WT and MT had a substantial effect on many

stem anatomical features, with several significant differences between

the treatments and/or accessions (Table 4).

Interestingly, ABR6 responded differently at the cellular level to

the treatments as compared with Bd21. Both WT and MT resulted in

a significant (P ≤ .05) decrease of about 25% in the area of epidermal

cells of ABR6 as compared with controls. The epidermal area of Bd21

was not significantly affected by either treatment (Table 4).

For Bd21, WT reduced the cortex area significantly (P ≤ .05) by

more than 30% compared with control, whereas MT had no effect.

Treatments had no significant effect on the cortex area of ABR6 com-

pared with control, although there was a significant difference

between the treatments (Table 4).

The total relative cross-sectional area of the VBs in control plants

differed substantially between ABR6 and Bd21 (comprising ~15% and

~21% of total stem area, respectively). Both treatments had a strong

positive effect on the VB cross-sectional area of ABR6, whereas Bd21

responded negatively. Thus, MT resulted in a significant (P ≤ .05)

decrease in the area of both inner and outer VBs in Bd21, leading to

an overall decrease of ~20% in the total VB area (Table 4). After WT

of Bd21, only the outer VB area showed a significant decrease, lead-

ing to an overall total decrease in VB area of ~8.5% when compared

with control Bd21 plants. Although WT significantly reduced (P ≤ .05)

the area of the interfascicular region by 5% in Bd21, these plants

developed significantly (P ≤ .05) more pith area (>30% increase) as

compared with control Bd21 plants (Table 4).

In contrast to observations for Bd21, both treatments of ABB6

significantly (P ≤ .05) increased the area of the inner VB (by 23% and

36% for WT and MT, respectively) and the outer VB (by 65% and

78% for WT and MT, respectively) compared with control plants

(Table 4), leading to an increase of the total VB area of 30% after WT

and almost 50% after MT.

The number of VB was similar in both genotypes under control

conditions, and these did not change significantly with respect to

treatments. Thus, Bd21 showed no significant changes in number of

inner (P = .630), outer (P = .171), and total number of VB (P = .140) in

response to treatments. No significant differences in inner (P = .959),

outer (P = .142), and total number of VB (P = .194) in ABR6 plants

were found (Table 4).

Although cross-sectional cell size, measured for the first four rows

of cells above the bundle sheath (Figure S2), showed no significant

differences between treatments in Bd21 (P = .157) and ABR6

(P = .223), the cell walls of these same cells were significantly (P ≤ .05)

thicker, especially after WT with an increase of 19% and 14% in Bd21

and ABR6, respectively, compared with controls. Together, these

results show that mechanical stimulation by wind or MT leads to

altered cellular anatomy of Brachypodium stems with notable geno-

typic differences in terms of treatment effects, in particular for

VB area.

TABLE 4 Stem cross section anatomy (IN2) of Bd21 and ABR6 plants after treatments (control, WT, and MT)

Bd21 ABR6

Feature Control WT MT Control WT MT

Area (%)

Epidermis 6.75 ± 0.56 6.55 ± 0.27 7.45 ± 0.16 6.49 ± 0.71 4.86 ± 0.58a 4.84 ± 0.06a

Cortex 13.82 ± 0.74 9.37 ± 0.19a,b 13.77 ± 0.45b 11.91 ± 0.89 10.62 ± 0.44b 12.48 ± 0.48b

Outer VB 7.4 ± 0.57 5.93 ± 0.2a 5.18 ± 0.18a 4.4 ± 0.21 7.24 ± 0.11a 7.85 ± 0.09a

Inner VB 13.81 ± 0.34 13.46 ± 0.11b 11.75 ± 0.12a,b 10.44 ± 0.43 12.9 ± 0.63a 14.2 ± 0.71a

Total VB 21.21 ± 0.22 19.39 ± 0.1a,b 16.92 ± 0.13a,b 14.84 ± 0.45 19.39 ± 0.1a,b 22.05 ± 0.7a,b

Interfascicular region 32.42 ± 0.81 30.68 ± 0.44a,b 33.4 ± 0.76b 29.91 ± 0.78 30.25 ± 0.15b 28.25 ± 0.47b

Pith 25.8 ± 1.33 34.01 ± 0.71a 28.46 ± 1.14 36.85 ± 1.78 34.13 ± 0.71 32.38 ± 0.14a

Anatomy

Number of outer VB 9.67 ± 1.53 9.67 ± 1.53 7.67 ± 0.58 9.33 ± 0.58 12 ± 3 13.67 ± 2.52

Number of inner VB 7.67 ± 0.58 7.67 ± 0.58 8 ± 0 9 ± 0 9 ± 0 9 ± 1

Total number of VB 17.33 ± 1.15 17.33 ± 1.15 15.67 ± 0.58 18.33 ± 1.53 21 ± 2.65 22.67 ± 3.21

Cell wall thickness (μm) 1.91 ± 0.11 2.28 ± 0.1a,b 1.95 ± 0.12a,b 1.86 ± 0.13 2.12 ± 0.15a,b 1.98 ± 0.11a,b

Cell size (μm2) 102.61 ± 57.15 106.84 ± 58.07 82.28 ± 48.18 119.33 ± 72.32 95.67 ± 48.51 110.98 ± 63.79

Note: Data presented are the averages ± SD and are based on measurements from three plants and three cross sections per plant. Area values for the

different tissues are presented as the relative percentage of the whole cross-sectional area. Data were normalized to a summative area closure of 100%.

ANOVA with a post hoc Tukey test was performed to identify statistical differences (P ≤ .05).

Abbreviations: ANOVA, analysis of variance; MT, mechanical treatment; VBs, vascular bundles; WT, wind treatment.
aSignificant difference from control.
bSignificant difference between WT and MT.
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3.4 | Mechanical stimulation triggers substantial
increases in lignin content

As a first step to examine if the treatments impacted cell wall-

related characteristics, stem cross sections were stained with

phloroglucinol for lignin. The staining was clearly more intense for

stem sections of both accessions after WT and MT as compared

with control stem sections (Figure 2a). Differences were most

noticeable in cortical cells below the epidermis and the inter-

fascicular regions between VBs. Moreover, xylem tracheid cells

were more intensely stained in WT and MT plants compared with

controls (Figure 2a). Thus, histochemical staining for lignin

suggested that stems after WT and MT were more lignified com-

pared with control plants in both accessions.

A more detailed examination confirmed that acetyl bromide solu-

ble lignin content was significantly higher (P ≤ .05) after both treat-

ments in both accessions compared with control plants (Figure 2b).

For Bd21, WT and MT resulted in a 38% and 40% increase in lignin

content, respectively, compared with control plants, whereas for

ABR6, the increase in lignin was 27% and 35% for WT and MT,

respectively.

A distinguishing feature of grasses is the presence of considerable

amounts of the cell wall-bound HCAs FA and p-CA. Both treatments

induced significant (P ≤ .05) differences in the content of both

F IGURE 2 Comparison of lignin content between treatments (control, wind treatment [WT], and mechanical treatment [MT]) for stems of
both Bd21 and ABR6. Phloroglucinol staining of internode 2 (IN2) cross sections showing the distribution of lignin (a). Acetyl bromide soluble
lignin percentage of cell-wall biomass dry weight (%ABSL; n = 3) (b). Analysis of variance with a post hoc Tukey test was performed to identify
statistical differences (P ≤ .05): asignificant difference from control. CX, cortex; IF, interfascicular region; XT, xylem tracheids. Scale bar = 50 μm
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phenolics in Bd21 and ABR6 (Table 5). An increase in p-CA was

observed after WT and MT in both accessions (a 2% and 8% increase

for WT and MT, respectively, in Bd21, and a 16% and 10% increase

for WT and MT, respectively, in ABR6). FA content decreased slightly

after both treatments in ABR6. In Bd21, MT also induced a decrease

in FA content (11% decrease). However, WT resulted in an 11%

increase compared with Bd21 control plants (Table 5). In summary,

mechanical stimulation leads to a substantial increase in cell wall lignin

content of Brachypodium stems as well as changes in the abundance

of cell wall-bound HCAs.

3.5 | Mechanical stimulation induces changes to
cell wall carbohydrates

To establish if mechanical stimulation affected other cell wall com-

positional features, we determined the cell wall monosaccharide

content of the most abundant cell wall sugars: glucose, xylose,

arabinose, galactose, and mannose. Analyses revealed a number of

modest but significant differences in the content of these cell wall

monosaccharides between treatments (Table 5). The glucose con-

tent, primarily derived from cellulose, increased significantly in

ABR6 after both treatments (6% increase for both WT and MT) and

after MT for Bd21 (11% increase compared with control). The

xylose content, the main monosaccharide of heteroxylans

(hemicellulosic polysaccharides), was only significantly affected in

ABR6 upon MT (8% reduction compared with control). In addition

to these two main cell wall monosaccharides, differences were also

observed for arabinose and galactose (Table 5). The arabinose con-

tent was reduced compared with controls for both treatments and

accessions, with a more substantial reduction in ABR6 (a 5% and

10% reduction for WT and MT, respectively). Most of the arabinose

in grass cell walls is bound to xylan backbones, forming

arabinoxylan. Also the galactose content, mostly contained in pec-

tins and arabinogalactan proteins, was mostly reduced, with the

strongest reduction after MT (21% and 18% for Bd21 and ABR6,

respectively). However, WT increased the galactose content in

Bd21 with 14% (Table 5). Together, these results show that

mechanical stimulation can alter the abundance of several cell wall

monosaccharides.

3.6 | Mechanical stimulation induces changes in
pectins

To examine potential differences in cell wall carbohydrates further, we

performed ELISAs using a panel of monoclonal antibodies targeted to

different cell wall glycans (see Table 1 for an overview of the antibodies

used). Whereas no differences were observed in the relative abundance

of hemicellulose and glycoprotein related epitopes, significant differ-

ences were found in the relative abundance of various pectin-related

epitopes (Table 6). The OD values for LM5 were significantly reduced

for Bd21 stem samples after both treatments, whereas there was a sig-

nificant increase for LM5 in ABR6 for both treatments. LM5 recognizes

a tetrasaccharide in (1 ! 4)-β-D-galactan of pectic rhamnogalacturonan-

I (Jones, Seymour, & Knox, 1997). The abundance of a linear epitope in

(1 ! 5)-α-L-arabinans, detected by LM13, was specifically reduced by

WT in Bd21. Differences were also found for LM19 and JIM7, which

recognize unesterified and partially methyl-esterified epitopes of homo-

galacturonan (HG), respectively (Verhertbruggen, Marcus, Haeger,

Ordaz-Ortiz, & Knox, 2009). The abundance of unesterified HG (probed

by LM19) showed an increase in ABR6 WT samples, whereas the abun-

dance of methyl-esterified HG (probed by JIM7) decreased in Bd21 MT

samples (Table 6). Immuno-labelling results of stem cross sections with

the same pectin-related monoclonal antibodies were in overall agree-

ment with the ELISA data (Figure S4A–E).

TABLE 5 Analysis of cell wall monosaccharide and hydroxycinnamic acid content

Bd21 ABR6

Term Control WT MT Control WT MT

Monosaccharide content (%)

Glucose 36.99 ± 0.87 37.2 ± 0.86b 41.23 ± 1.87a,b 40.48 ± 0.4 42.97 ± 1.07a 42.81 ± 0.68a

Xylose 22.98 ± 0.48 22.42 ± 0.53 21.94 ± 1.14 21.46 ± 0.36 21.28 ± 0.74b 19.74 ± 0.32a,b

Arabinose 3.03 ± 0.1 2.99 ± 0.12b 2.99 ± 0.12b 2.59 ± 0.09 2.47 ± 0.13 2.33 ± 0.11a

Galactose 0.63 ± 0.03 0.72 ± 0.06ab 0.50 ± 0.05ab 0.55 ± 0.03 0.52 ± 0.04b 0.45 ± 0.03ab

Mannose 0.57 ± 0.04 0.64 ± 0.04a 0.60 ± 0.04 0.45 ± 0.02 0.58 ± 0.06a 0.61 ± 0.03a

Hydroxycinnamic acids (%)

p-Coumaric acid 0.336 ± 0.001 0.343 ± 0.002a,b 0.364 ± 0.002a,b 0.501 ± 0.006 0.580 ± 0.008a,b 0.553 ± 0.004a,b

Ferulic acid 0.361 ± 0.002 0.399 ± 0.004a,b 0.321 ± 0.003a,b 0.547 ± 0.004 0.541 ± 0.001b 0.532 ± 0.002a,b

Note: Values are the mean ± SD (n = 3) and are expressed as the percentage on a cell wall dry weight basis for the three treatments (control, WT, and MT)

for Bd21 and ABR6. ANOVA with a post hoc Tukey test was performed to identify statistical differences (P ≤ .05).

Abbreviations: ANOVA, analysis of variance; MT, mechanical treatment; WT, wind treatment.
aSignificant difference from control.
bSignificant difference between WT and MT.
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The ELISA results suggested that mechanical stimulation may

affect the level of methyl-esterified pectins. Cell wall PMEs, which

catalyse the demethylesterification of pectins, were among the most

highly represented cell wall modification genes in touch-induced gene

sets in Arabidopsis (Lee et al., 2005). We, therefore, decided to inves-

tigate this aspect further and used radial gel diffusion assays to deter-

mine if mechanical stimulation altered the PME activity. Both WT and

MT induced a significant increase in PME activity in the stem samples

of both Brachypodium accessions when compared with controls

(Figure 3). WT increased the PME activity by 27% and 69% in Bd21

and ABR6, respectively. For MT, the increases in PME activity were

even higher (81% and greater than twofold for Bd21 and ABR6,

respectively). Interestingly, both treatments also led to significantly

higher PME activities in leaf samples for both accessions, an increase

of ~45% in Bd21 and ~65% in ABR6 for both WT and MT (Figure S5).

These results show that fine structural features of cell wall polysac-

charides, in particular pectin methylesterification, are affected by

mechanical stimulation.

TABLE 6 Relative abundances of different glycan epitopes in stem cell wall extract after the three treatments (control, WT, and MT) for both
Bd21 and ABR6

Bd21 ABR6

mAb C WT MT C WT MT

HG LM19 0.24 0.24 0.25 0.26 0.28a,b 0.24b

LM20 0.31 0.31 0.31 0.34 0.33 0.33

JIM7 0.72 0.72b 0.64a,b 0.65 0.65 0.65

RG-I LM5 0.25 0.22a 0.22a 0.23 0.29a 0.3a

LM6 0.46 0.47 0.47 0.51 0.52 0.53

LM13 0.24 0.17a,b 0.23b 0.1 0.1 0.11

HC LM25 0.91 0.93 0.89 0.94 0.94 0.94

LM28 1.09 1.08 1.08 1.08 1.08 1.08

LM10 0.91 0.91 0.92 0.87 0.89 0.87

GP LM1 0.22 0.22 0.23 0.25 0.24 0.24

LM2 0.15 0.16 0.15 0.18 0.17 0.17

Other LM12 0.51 0.51 0.53 0.52 0.52 0.53

Note: Relative abundances of glycan epitopes were determined by ELISA absorbance obtained from the different cell wall directed monoclonal antibodies

(mAb) used in this study (see Table 1). ANOVA with a post hoc Tukey test was performed to identify statistical differences (P ≤ .05). Samples with

significant differences are colour coded in shades of green.

Abbreviations: ANOVA, analysis of variance; ELISA, enzyme-linked immunosorbent assay; GP, glycoprotein; HC, hemicellulose; HG, homogalacturonan;

RG-I, rhamnogalacturonan-I.
aSignificant difference from control (C).
bSignificant difference between WT and MT.

F IGURE 3 Pectin methylesterase
(PME) activity in stems of Bd21 and
ABR6 after the three treatments
(control, wind treatment [WT], and
mechanical treatment [MT]). Radial gel
diffusion assays showing PME
activities (halo) in protein extracts
from stems and quantification of PME

activity (nkat–nanokatal) for Bd21
(a) and ABR6 (b). Analysis of variance
with a post hoc Tukey test was
performed to identify statistical
differences (P ≤ .05): asignificant
difference from control and
bsignificant difference between WT
and MT
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3.7 | Mechanical stimulation increases the rigidity
of stem tissues

Because both wind and mechanical treatments induced changes in cell

wall characteristics and stem anatomical features, we hypothesized

that these treatments may affect the mechanical properties of the

stem material. The mechanical properties of internodes two (IN2) and

three (IN3) from fully mature stems of Brachypodium plants exposed

to the various treatments were evaluated with a 3-point bending test.

The obtained values for Young's modulus for Bd21 controls were sim-

ilar to those previously reported for senesced Brachypodium Bd21

stem segments (Marriott et al., 2014). Young's modulus of both inter-

nodes from both accessions was significantly increased by the two

treatments compared with controls (Figure 4). For Bd21, WT

increased Young's modulus by 14% and 15% for IN2 and IN3, respec-

tively. For MT, the increases were 19% and 12% for IN2 and IN3,

respectively. Similar observations were made for ABR6, with a 9% and

8% increase in Young's modulus after WT and a 14% and 8% increase

after MT for IN2 and IN3, respectively. Treatment-induced increases

in Young's modulus were also observed in tests using IN2 from green

stems of Bd21 and ABR6 collected immediately after the treatments

(Figure S6). Again, values obtained were similar to those previously

reported for green Bd21 stems (Timpano et al., 2015). These data

suggest that for both Brachypodium accessions, mechanical stimula-

tion increased the mechanical rigidity of the stem tissues.

3.8 | Mechanical stimulation affects biomass
recalcitrance

An important quality measure for grass biomass, both for its use as a

forage and a bioenergy feedstock, is the ease by which sugars can be

released from the cell wall by enzymatic hydrolysis. Saccharification

assays revealed significant (P ≤ .05) differences in the enzymatic release

of the three main cell wall sugars after both treatments for the two

accessions (Figure 5). Both WT and MT reduced the glucose release by

8% and 9% for Bd21 and ABR6, respectively. The amount of arabinose

released by enzymatic hydrolysis of WT and MT stem samples was

reduced by 16% and 9%, respectively, in Bd21, whereas the reduction

in ABR6 was 10% for both treatments compared with control samples.

Although xylose release was also reduced in ABR6 for WT (14% reduc-

tion) and MT (7% reduction), a significant increase in xylose release was

observed for Bd21 after WT (15% increase) and MT (13% increase;

Figure 5). The total sugar release in Bd21 was not significantly reduced

by WT (2.2% reduction) and MT (1.6% reduction), whereas a significant

(P ≤ .05) reduction was observed in ABR6 after WT (10% reduction)

and WT (7% reduction; Figure S7). These results show that exposure of

Brachypodium plants to wind and MTs generally reduces the enzymatic

sugar release from the cell wall matrix and thus increases biomass recal-

citrance. Moreover, the effect varies with genotype.

4 | DISCUSSION

Despite mechanical stimulation, mostly in the form of wind exposure,

being frequently experienced by plants, it is often overlooked as a rel-

evant environmental stress factor. Knowledge of the acclimation of

grasses to moderate levels of mechanical stimulation is particularly

poor. In this study, we show that wind and MTs of Brachypodium

induce significant changes across multiple scales, from cell wall com-

position to whole plant morphology. In addition, exposure to these

stimuli during early development affect several properties later on

when plants reach maturity. Despite suggestions that wind and

mechanical stress may affect plants differently (Anten, Alcalá-Herrera,

Schieving, & Onoda, 2010; Smith & Ennos, 2003), only subtle alter-

ations between the effect of treatment were found. Although the

overall direction of responses of the two accessions to mechanical

stimulation was largely similar, we note several quantitative differ-

ences in the response of accessions to these environmental stimuli.

4.1 | Mechanical stimulation affects plant growth,
development, and reproduction

Changes in growth and development allow plants to withstand and

improve resistance to mechanical stimulation (Biddington, 1986;

F IGURE 4 Mechanical properties of the stem. Data represent
Young's modulus (GPa) of the second and third internode (n = 5) for
Bd21 (a) and ABR6 (b). Values are based on measurements on
senesced material. Analysis of variance with a post hoc Tukey test
was performed to identify statistical differences (P ≤ .05): asignificant
difference from control and bsignificant difference between wind
treatment (WT) and mechanical treatment (MT)
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Jaffe & Telewski, 1984; Niez et al., 2019; Retuerto & Woodward,

1992; Whitehead, 1963). Our study presents, to our knowledge, the

first detailed analysis of exposure to moderate wind in a grass species.

A ~50% reduction in stem height was the most dramatic phenotypic

change observed after mechanical stimulation of Brachypodium by

both WT and MT, agreeing with previous findings in other species

(e.g., Biddington, 1986; Jaffe, 1973; Niez et al., 2019), although data

on the phenotypic response for members of the grass family are lim-

ited to only a handful of studies (Crook & Ennos, 1995; Jaffe, 1973;

Metzger & Steucek, 1974; Steucek & Gordon, 1975).

Generally, shorter stems will limit the bending moment and reduce

the risk of various mechanical strains, plastic deformation, uprooting,

stem buckling, and failure (Paul-Victor & Rowe, 2011) so is likely adap-

tive. Accordingly, we show that stem shortening is correlated with

F IGURE 5 Sugar release data
after enzymatic hydrolysis of stem
cell wall material for Bd21 (a) and
ABR6 (b) for the three treatments
(control, wind treatment [WT], and
mechanical treatment [MT]). Values
are presented as the percentage of
monosaccharide (Mns) released
relative to the corresponding

monosaccharide content (n = 3).
Analysis of variance with a post hoc
Tukey test was performed to
identify statistical differences
(P ≤ .05): asignificant difference from
control and bsignificant difference
between WT and MT
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alterations in mechanical properties. Mechanical stimulation increased

Young's modulus of Internodes 2 and 3, suggesting that reduced

stem elongation is associated with increased stiffness. Interestingly,

most studies in dicot plants have reported a reduction in stiffness

of stems in response to mechanical stimulation (Anten, Casado-

Garcia, & Nagashima, 2005; Hepworth & Vincent, 1999; Niez et al.,

2019; Paul-Victor & Rowe, 2011; Telewski & Jaffe, 1986a, 1986b;

Telewski & Pruyn, 1998). A lower Young's modulus (increased flexi-

bility) could be linked to reduced lodging of stems (Niklas, 1992).

But in agreement with our findings, mechanical stimulation increases

Young's modulus in maize stems (Goodman & Ennos, 1996). Taken

together, these reports suggest that grasses and dicots may respond

differently to mechanical stimulation.

Interestingly, both wind and MTs negatively affected a number of

fitness-related traits delaying flowering and reducing total seed yield,

seed number, and average seed weight. Such effects are common in

dicot species (Anten et al., 2005; Bossdorf & Pigliucci, 2009; Cipollini,

1999; Johnson, Sistrunk, Polisensky, & Braam, 1998; Niklas, 1998;

Retuerto & Woodward, 1992; Zhang et al., 2013), but this is, to our

knowledge, the first evidence for mechanical stimulation negatively

affecting reproductive traits in grasses.

Decreased aboveground biomass (of 20–45%) is consistent with

findings from dicots after wind stress (Anten et al., 2005, 2009; Good-

man & Ennos, 1996; Kern, Ewers, Telewski, & Koehler, 2005) and also

after mechanical stress (Bossdorf & Pigliucci, 2009; Henry & Thomas,

2002; Murren & Pigliucci, 2005; Retuerto & Woodward, 1992; Zhao

et al., 2018). The observed reduction in biomass is associated with a

reduction in stem height, which could render individuals less competi-

tive in mixed communities.

These results are also relevant from an agronomic and economic

point of view. Flowering time impacts on grain yield and has played a

major role in local adaptation of cereals as they moved north and west

through Europe (Cockram et al., 2007; Hill & Li, 2016). The mechanical

stimulation responses highlight that wind and other forms of mechani-

cal stimulation may represent a major factor affecting grain produc-

tion and quality of cereals worldwide.

4.2 | Mechanical stimulation leads to changes in
cell wall characteristics and affects biomass quality

Grasses are also important globally as animal forage and more recently

as industrial feedstocks, where both the quantity and quality of bio-

mass produced are economically important. We show that mechanical

stimulation induces significant changes in cell wall composition and

architecture that influence biomass quality.

Plant cell walls are made up of four main polymers: cellulose,

hemicellulose, pectin, and lignin. We observed a dramatic change

(27–40% increase) in stem cell wall lignin content upon mechanical

stimulation, particularly in the interfascicular tissue and cortex. These

findings suggest a correlation between the increase in lignin and

increased Young's moduli of internodes. Lignin associated structural

reinforcement may result in increased tensile strength (Barros, Serk,

Granlund, & Pesquet, 2015; Gibson, 2012) and lodging resistance

(Li et al., 2018), but the relationship between mechanical stimulation

and lignin content has been less consistent. For instance, wind

stressed common bean showed a 25% increase in lignin accumulation

compared with nonstressed plants (Cipollini, 1997), and mechanical

stress induced an increase in lignin content in Bryonia dioica inter-

nodes (De Jaegher, Boyer, & Gaspar, 1985). Conversely, the density

of lignified cells was reduced in Arabidopsis exposed to wind (Paul-

Victor & Rowe, 2011), and no increase in lignification was found in

wind stressed Abutilon theophrasti (Henry & Thomas, 2002).

In addition to lignin, the content of cell wall-bound FA and p-CA

was significantly affected by wind and MTs, with a consistent increase

in p-CA. Most of the p-CA in grasses acylates lignin (Zhong, Cui, & Ye,

2019), but its functional role remains unknown. Cell wall sugars, in

particular, glucose and galactose, were also affected: Glucose content

increased as a result of mechanical stimulation while a varied

response, depending on treatment and accession, was observed for

galactose.

Spatial and structural information, obtained using ELISAs and

immunofluorescence analysis, revealed subtle changes in the distribu-

tion and relative abundance of pectin-related epitopes, including for

the level of methylesterification, induced by mechanical stimulations.

HG is the most abundant pectic polysaccharide in cell walls and is usu-

ally synthesized in a largely methyl-esterified form. PMEs play an

important role in regulating the methylesterification status of HG as

they catalyse the demethylesterification of HG (Bosch, Cheung, &

Hepler, 2005; Mohnen, 2008; Pelloux, Rustérucci, & Mellerowicz,

2007). HG with low levels of methylesterification can facilitate

calcium-mediated gelation, causing cell wall stiffening as well as regu-

lating porosity (Hongo, Sato, Yokoyama, & Nishitani, 2012; Ridley,

O'Neill, & Mohnen, 2001; Willats et al., 2001). In this study, both

treatments significantly increased PME activity in both accessions,

suggesting lower levels of methyl-esterified HG in these plants.

Higher PME activity after mechanical stimulation would predict a

lower abundance of JIM7/LM20 and higher abundance of LM19.

Although ELISAs showed no effect for LM20, which detects high

levels of methylesterification (Verhertbruggen et al., 2009), MT Bd21

had decreased levels of JIM7, which detects partially esterified HG

(Clausen, Willats, & Knox, 2003; Verhertbruggen et al., 2009). Like-

wise, an increase for LM19 (unesterified HG) was only observed for

ABR6 after WT. Therefore, our ELISA data could only partly confirm

the shifts in epitope abundances expected based on the observed

increases in PME activities. Interestingly, PME encoding genes were

among the most highly represented touch-induced cell wall modifica-

tion genes in Arabidopsis (Lee et al., 2005). Clearly, the increases in

PME activity upon mild mechanical stimulation, which were large and

detected in both stem and leaf samples, warrant further investigations

to determine if these give rise to changes in the cell wall and tissue

properties, such as tissue integrity, wall plasticity, and cell adhesion. It

will also be interesting to see if mechanical stimulation alters the dis-

ease resistance of Brachypodium as it has been shown that this can

be affected by the methylesterification status of pectins (Bellincampi,

Cervone, & Lionetti, 2014; Lionetti, Cervone, & Bellincampi, 2012). In
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addition, the observed increase in lignin deposition may provide extra

reinforcement that could enable adaptation and/or resistance to abi-

otic stresses (Le Gall et al., 2015).

Grasses represent an abundant and widespread source of ligno-

cellulosic biomass, with potential as a feedstock for biorefining into

renewable and sustainable biofuels and commodity chemicals (Bhatia

et al., 2017). To fully exploit this potential, it is vital to understand

how genotype-environment interactions impact biomass yield and

quality. Although it is well established that environmental factors such

as water and nutrient availability impact on biomass yield, little is

known about the consequences of changing environmental conditions

for biomass quality (da Costa et al., 2019; van der Weijde et al., 2017).

Sugar release by enzymatic hydrolysis (saccharification) is a commonly

used measure to assess biomass quality. To our knowledge, this is the

first data linking mechanical stimulation to differences in saccharifica-

tion. Both wind and MT led to lower glucose and arabinose release in

both accessions, but clear genotypic differences were observed for

xylose release. From an applied perspective, the observed reduction

in both aboveground biomass yield, and sugar release in response to

mechanical stimulation has direct consequences on the availability

and quality of biomass for biorefining.

4.3 | Genotypic differences in responses to
mechanical stimulation

Although the treatment responses in terms of many of the macroscopic

and biochemical traits tended to be similar between the two accessions,

a notable exception were those involving the vascular system. Mechan-

ical stimulation affects architectural and anatomical features in dicot

stems (Paul-Victor & Rowe, 2011; Rigo, 2016; Roignant et al., 2018),

which may influence their mechanical properties (Shah, Reynolds, &

Ramage, 2016). Mechanical stimulation has been reported to increase

xylem tissue in a range of dicots (Hepworth & Vincent, 1999; Hunt &

Jaffe, 1980; Jaffe, 1973, 1980), but the situation in rice may be more

complex. Mechanical stimulation by touch increased the VB area in one

cultivar (Zhang, Quan, Huang, Luo, & Ouyang, 2013), but rubbing had

no effect in another (Zhao et al., 2018). Here, we carefully compared

two morphologically distinct accessions for wind or mechanical induced

changes in the relative areas of different stem tissues, including cortex,

pith, epidermis, and VBs. The vascular anatomy, as well as its response

to the treatments, vary between genotypes: mechanical stimulation of

Bd21 led to a decrease in total VB area whereas there was a large

increase in ABR6. Interestingly, we also observed genotype-specific

qualitative differences in cell wall composition in response to treat-

ments, which may be linked to the distinct responses of the two acces-

sions in terms of stem anatomical features.

The size and cell number of VBs in Brachypodium are likely

defined at or before the point of elongation, as their number and size

do not significantly change during development and growth (Matos

et al., 2013); thus, any treatment-induced changes in VB area suggest

that these changes are mediated close to the apical meristem by a yet

to be explored signal transduction cascade. The accession-specific

differences identified here suggest that Brachypodium would be a

useful experimental system to explore the underlying genetic control.

Understanding how phenotypic diversity is controlled at the genetic level

is now possible given that genomic sequences are available for an

increasing number of accessions, permitting genome-wide association

studies (Wilson et al., 2019). In addition, several genetically unstructured

mapping populations have been created from crosses between selected

inbred lines, including one between ABR6 and Bd21 (Bettgenhaeuser

et al., 2017), that should allow functional assessment of observed differ-

ences in mechano-stimulatory responses.

This study illustrates that mechanical stimulation induces a range of

changes, several varying quantitatively between accessions, from the cel-

lular and tissue level to whole plant morphology with important implica-

tions for fitness, productivity, and quality-related traits in the grass

Brachypodium. Further studies are required to identify and dissect the

molecular mechanisms involved in the perception and transduction of

mechanical stimuli that lead to the observed morphogenetic responses.
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