662 research outputs found
Branching ratio measurements of the 7.12-MeV state in 16O
Knowledge of the gamma-ray branching ratios of the 7.12-MeV state of 16O is
important for the extrapolation of the 12C(a,g)16O cross section to
astrophysical energies. Ground state transitions provide most of the
12C(a,g)16O total cross section while cascade transitions have contributions of
the order of 10-20%. Determining the 7.12-MeV branching ratio will result in a
better extrapolation of the cascade and E2 ground state cross section to low
energies. We report here on measurements on the branching ratio of the 7.12-MeV
level in 16O.Comment: 4 pages, 5 figures. Contribution to the Eigth International Symposium
on Nuclei in the Cosmo
No equity, no triple aim: strategic proposals to advance health equity in a volatile policy environment
Health professionals, including social workers, community health workers, public health workers, and licensed health care providers, share common interests and responsibilities in promoting health equity and improving social determinants of health—the conditions in which we live, work, play, and learn. This article summarizes underlying causes of health inequity and comparatively poor health outcomes in the U.S. It describes barriers to realizing the hope embedded in the 2010 Patient Protection and Affordable Care Act that moving away from fee-for-service payments will naturally drive care upstream as providers respond to greater financial risk for the health of their patients by undertaking greater prevention efforts. The article asserts that health equity should serve as the guiding framework for achieving the Triple Aim of health care reform. It outlines practical opportunities for improving care and for promoting stronger efforts to address social determinants of health. These proposals include developing a dashboard of measures to assist providers committed to health equity and community-based prevention and to promote institutional accountability for addressing socio-economic factors that influence health
No equity, no triple aim: strategic proposals to advance health equity in a volatile policy environment
Health professionals, including social workers, community health workers, public health workers, and licensed health care providers, share common interests and responsibilities in promoting health equity and improving social determinants of health—the conditions in which we live, work, play, and learn. This article summarizes underlying causes of health inequity and comparatively poor health outcomes in the U.S. It describes barriers to realizing the hope embedded in the 2010 Patient Protection and Affordable Care Act that moving away from fee-for-service payments will naturally drive care upstream as providers respond to greater financial risk for the health of their patients by undertaking greater prevention efforts. The article asserts that health equity should serve as the guiding framework for achieving the Triple Aim of health care reform. It outlines practical opportunities for improving care and for promoting stronger efforts to address social determinants of health. These proposals include developing a dashboard of measures to assist providers committed to health equity and community-based prevention and to promote institutional accountability for addressing socio-economic factors that influence health
A Tale of Two Fractals: The Hofstadter Butterfly and The Integral Apollonian Gaskets
This paper unveils a mapping between a quantum fractal that describes a
physical phenomena, and an abstract geometrical fractal. The quantum fractal is
the Hofstadter butterfly discovered in 1976 in an iconic condensed matter
problem of electrons moving in a two-dimensional lattice in a transverse
magnetic field. The geometric fractal is the integer Apollonian gasket
characterized in terms of a 300 BC problem of mutually tangent circles. Both of
these fractals are made up of integers. In the Hofstadter butterfly, these
integers encode the topological quantum numbers of quantum Hall conductivity.
In the Apollonian gaskets an infinite number of mutually tangent circles are
nested inside each other, where each circle has integer curvature. The mapping
between these two fractals reveals a hidden threefold symmetry embedded in the
kaleidoscopic images that describe the asymptotic scaling properties of the
butterfly. This paper also serves as a mini review of these fractals,
emphasizing their hierarchical aspects in terms of Farey fractions
Momentum transfer using chirped standing wave fields: Bragg scattering
We consider momentum transfer using frequency-chirped standing wave fields.
Novel atom-beam splitter and mirror schemes based on Bragg scattering are
presented. It is shown that a predetermined number of photon momenta can be
transferred to the atoms in a single interaction zone.Comment: 4 pages, 3 figure
flavour tagging using charm decays at the LHCb experiment
An algorithm is described for tagging the flavour content at production of
neutral mesons in the LHCb experiment. The algorithm exploits the
correlation of the flavour of a meson with the charge of a reconstructed
secondary charm hadron from the decay of the other hadron produced in the
proton-proton collision. Charm hadron candidates are identified in a number of
fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is
calibrated on the self-tagged decay modes and using of data collected by the LHCb
experiment at centre-of-mass energies of and
. Its tagging power on these samples of
decays is .Comment: All figures and tables, along with any supplementary material and
additional information, are available at
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm
Evidence for the strangeness-changing weak decay
Using a collision data sample corresponding to an integrated luminosity
of 3.0~fb, collected by the LHCb detector, we present the first search
for the strangeness-changing weak decay . No
hadron decay of this type has been seen before. A signal for this decay,
corresponding to a significance of 3.2 standard deviations, is reported. The
relative rate is measured to be
, where and
are the and fragmentation
fractions, and is the branching
fraction. Assuming is bounded between 0.1 and
0.3, the branching fraction would lie
in the range from to .Comment: 7 pages, 2 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-047.htm
Study of the production of and hadrons in collisions and first measurement of the branching fraction
The product of the () differential production
cross-section and the branching fraction of the decay () is
measured as a function of the beauty hadron transverse momentum, ,
and rapidity, . The kinematic region of the measurements is and . The measurements use a data sample
corresponding to an integrated luminosity of collected by the
LHCb detector in collisions at centre-of-mass energies in 2011 and in 2012. Based on previous LHCb
results of the fragmentation fraction ratio, , the
branching fraction of the decay is
measured to be \begin{equation*} \mathcal{B}(\Lambda_b^0\rightarrow J/\psi
pK^-)= (3.17\pm0.04\pm0.07\pm0.34^{+0.45}_{-0.28})\times10^{-4},
\end{equation*} where the first uncertainty is statistical, the second is
systematic, the third is due to the uncertainty on the branching fraction of
the decay , and the
fourth is due to the knowledge of . The sum of the
asymmetries in the production and decay between and
is also measured as a function of and .
The previously published branching fraction of , relative to that of , is updated.
The branching fractions of are determined.Comment: 29 pages, 19figures. All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-032.htm
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
- …
