111 research outputs found

    A Dynamical Analysis of the Suitability of Prehistoric Spheroids from the Cave of Hearths as Thrown Projectiles

    Get PDF
    Spheroids are ball-shaped stone objects found in African archaeological sites dating from 1.8 million years ago (Early Stone Age) to at least 70,000 years ago (Middle Stone Age). Spheroids are either fabricated or naturally shaped stones selected and transported to places of use making them one of the longest-used technologies on record. Most hypotheses about their use suggest they were percussive tools for shaping or grinding other materials. However, their size and spherical shape make them potentially useful as projectile weapons, a property that, uniquely, humans have been specialised to exploit for millions of years. Here we show (using simulations of projectile motions resulting from human throwing) that 81% of a sample of spheroids from the late Acheulean (Bed 3) at the Cave of Hearths, South Africa afford being thrown so as to inflict worthwhile damage to a medium-sized animal over distances up to 25 m. Most of the objects have weights that produce optimal levels of damage from throwing, rather than simply being as heavy as possible (as would suit other functions). Our results show that these objects were eminently suitable for throwing, and demonstrate how empirical research on behavioural tasks can inform and constrain our theories about prehistoric artefacts

    Use of ecstasy and other psychoactive substances among school-attending adolescents in Taiwan: national surveys 2004–2006

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the backdrop of a global ecstasy epidemic, this study sought to examine the trend, correlates, and onset sequence of ecstasy use among adolescents in Taiwan, where a well-established gateway drug such as marijuana is much less popular.</p> <p>Methods</p> <p>A multistage probability survey of school-attending adolescents in grades 7, 9, 10, and 12, aged 11–19 years, was conducted in 2004, 2005, and 2006. A self-administered anonymous questionnaire elicited response rates ranging from 94.3% to 96.6%. The sample sizes were 18232 respondents in 2004, 17986 in 2005, and 17864 in 2006.</p> <p>Results</p> <p>In terms of lifetime prevalence and incidence, ecstasy and ketamine by and large appeared as the first and second commonly used illegal drugs, respectively, among middle (grades 7 and 9) and high school students (grades 10 and 12) during the 3-year survey period; however, this order was reversed in the middle school-aged students starting in 2006. Having sexual experience, tobacco use, and betel nut use were factors consistently associated with the onset of ecstasy use across years. The majority of ecstasy users had been involved in polydrug use, such as the use of ketamine (41.4%–53.5%), marijuana (12.7%–18.7%), and methamphetamine (4.2%–9.5%).</p> <p>Conclusion</p> <p>From 2004 to 2006, a decline was noted in the prevalence and incidence rate of ecstasy, a leading illegal drug used by school-attending adolescents in Taiwan since the early 2000s. The emerging ketamine use trend may warrant more attention in the future.</p

    Genome-Wide Identification of R2R3-MYB Genes and Expression Analyses During Abiotic Stress in

    Get PDF
    The R2R3-MYB is one of the largest families of transcription factors, which have been implicated in multiple biological processes. There is great diversity in the number of R2R3-MYB genes in different plants. However, there is no report on genome-wide characterization of this gene family in cotton. In the present study, a total of 205 putative R2R3-MYB genes were identified in cotton D genome (Gossypium raimondii), that are much larger than that found in other cash crops with fully sequenced genomes. These GrMYBs were classified into 13 groups with the R2R3-MYB genes from Arabidopsis and rice. The amino acid motifs and phylogenetic tree were predicted and analyzed. The sequences of GrMYBs were distributed across 13 chromosomes at various densities. The results showed that the expansion of the G. Raimondii R2R3-MYB family was mainly attributable to whole genome duplication and segmental duplication. Moreover, the expression pattern of 52 selected GrMYBs and 46 GaMYBs were tested in roots and leaves under different abiotic stress conditions. The results revealed that the MYB genes in cotton were differentially expressed under salt and drought stress treatment. Our results will be useful for determining the precise role of the MYB genes during stress responses with crop improvement

    Estimating confidence intervals in predicted responses for oscillatory biological models

    Get PDF
    BACKGROUND: The dynamics of gene regulation play a crucial role in a cellular control: allowing the cell to express the right proteins to meet changing needs. Some needs, such as correctly anticipating the day-night cycle, require complicated oscillatory features. In the analysis of gene regulatory networks, mathematical models are frequently used to understand how a network’s structure enables it to respond appropriately to external inputs. These models typically consist of a set of ordinary differential equations, describing a network of biochemical reactions, and unknown kinetic parameters, chosen such that the model best captures experimental data. However, since a model’s parameter values are uncertain, and since dynamic responses to inputs are highly parameter-dependent, it is difficult to assess the confidence associated with these in silico predictions. In particular, models with complex dynamics - such as oscillations - must be fit with computationally expensive global optimization routines, and cannot take advantage of existing measures of identifiability. Despite their difficulty to model mathematically, limit cycle oscillations play a key role in many biological processes, including cell cycling, metabolism, neuron firing, and circadian rhythms. RESULTS: In this study, we employ an efficient parameter estimation technique to enable a bootstrap uncertainty analysis for limit cycle models. Since the primary role of systems biology models is the insight they provide on responses to rate perturbations, we extend our uncertainty analysis to include first order sensitivity coefficients. Using a literature model of circadian rhythms, we show how predictive precision is degraded with decreasing sample points and increasing relative error. Additionally, we show how this method can be used for model discrimination by comparing the output identifiability of two candidate model structures to published literature data. CONCLUSIONS: Our method permits modellers of oscillatory systems to confidently show that a model’s dynamic characteristics follow directly from experimental data and model structure, relaxing assumptions on the particular parameters chosen. Ultimately, this work highlights the importance of continued collection of high-resolution data on gene and protein activity levels, as they allow the development of predictive mathematical models

    Editors’ Introduction: An Overview of the Educational Administration and Leadership Curriculum: Traditions of Islamic Educational Administration and Leadership in Higher Education

    Get PDF
    This chapter provides an overview of several topics relevant to constructing an approach to teaching educational administration and leadership in Muslim countries. First, it places the topic in the context of the changing nature and critiques of the field that argue for a greater internationalisation to both resist some of the negative aspects of globalisation and to represent countries’ traditions in the professional curriculum. Then, it identifies literature that presents the underlying principles and values of Islamic education that guide curriculum and pedagogy and shape its administration and leadership including the Qur’an and Sunnah and the classical educational literature which focuses on aims, values and goals of education as well as character development upon which a ‘good’ society is built. This is followed by a section on the Islamic administration and leadership traditions that are relevant to education, including the values of educational organisations and how they should be administered, identifying literature on the distinctive Islamic traditions of leadership and administrator education and training as it applies to education from the establishment of Islam and early classical scholars and senior administrators in the medieval period who laid a strong foundation for a highly sophisticated preparation and practice of administration in philosophical writings and the Mirrors of Princes writings, and subsequent authors who have built upon it up to the contemporary period. The final section provides an overview of the chapters in this collection

    Oligodendrocytes: biology and pathology

    Get PDF
    Oligodendrocytes are the myelinating cells of the central nervous system (CNS). They are the end product of a cell lineage which has to undergo a complex and precisely timed program of proliferation, migration, differentiation, and myelination to finally produce the insulating sheath of axons. Due to this complex differentiation program, and due to their unique metabolism/physiology, oligodendrocytes count among the most vulnerable cells of the CNS. In this review, we first describe the different steps eventually culminating in the formation of mature oligodendrocytes and myelin sheaths, as they were revealed by studies in rodents. We will then show differences and similarities of human oligodendrocyte development. Finally, we will lay out the different pathways leading to oligodendrocyte and myelin loss in human CNS diseases, and we will reveal the different principles leading to the restoration of myelin sheaths or to a failure to do so

    Brain energy rescue:an emerging therapeutic concept for neurodegenerative disorders of ageing

    Get PDF
    The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner — a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes
    corecore