16 research outputs found

    Fc-mediated functions of nirsevimab complement direct respiratory syncytial virus neutralization but are not required for optimal prophylactic protection

    Get PDF
    IntroductionNirsevimab is an extended half-life (M252Y/S254T/T256E [YTE]-modified) monoclonal antibody to the pre-fusion conformation of the respiratory syncytial virus (RSV) Fusion protein, with established efficacy in preventing RSV-associated lower respiratory tract infection in infants for the duration of a typical RSV season. Previous studies suggest that nirsevimab confers protection via direct virus neutralization. Here we use preclinical models to explore whether fragment crystallizable (Fc)-mediated effector functions contribute to nirsevimab-mediated protection.MethodsNirsevimab, MEDI8897* (i.e., nirsevimab without the YTE modification), and MEDI8897*-TM (i.e., MEDI8897* without Fc effector functions) binding to Fc γ receptors (FcγRs) was evaluated using surface plasmon resonance. Antibody-dependent neutrophil phagocytosis (ADNP), antibody-dependent cellular phagocytosis (ADCP), antibody-dependent complement deposition (ADCD), and antibody-dependent cellular cytotoxicity (ADCC) were assessed through in vitro and ex vivo serological analyses. A cotton rat challenge study was performed with MEDI8897* and MEDI8897*-TM to explore whether Fc effector functions contribute to protection from RSV.ResultsNirsevimab and MEDI8897* exhibited binding to a range of FcγRs, with expected reductions in FcγR binding affinities observed for MEDI8897*-TM. Nirsevimab exhibited in vitro ADNP, ADCP, ADCD, and ADCC activity above background levels, and similar ADNP, ADCP, and ADCD activity to palivizumab. Nirsevimab administration increased ex vivo ADNP, ADCP, and ADCD activity in participant serum from the MELODY study (NCT03979313). However, ADCC levels remained similar between nirsevimab and placebo. MEDI8897* and MEDI8897*-TM exhibited similar dose-dependent reduction in lung and nasal turbinate RSV titers in the cotton rat model.ConclusionNirsevimab possesses Fc effector activity comparable with the current standard of care, palivizumab. However, despite possessing the capacity for Fc effector activity, data from RSV challenge experiments illustrate that nirsevimab-mediated protection is primarily dependent on direct virus neutralization

    Development and Standardization of a High-Throughput Multiplex Immunoassay for the Simultaneous Quantification of Specific Antibodies to Five Respiratory Syncytial Virus Proteins

    No full text
    In view of vaccine and monoclonal development to reduce hospitalization and death due to lower respiratory tract infection caused by RSV, assessment of antibody levels against RSV is essential. This newly developed multiplex immunoassay is able to measure antibody levels against five RSV proteins simultaneously. This can provide valuable insight into the dynamics of (maternal) antibody levels and RSV infection in infants and toddlers during the first few years of life, when primary RSV infection occurs.Human respiratory syncytial virus (RSV) is a major cause of severe respiratory disease in (premature) newborns and causes respiratory illness in the elderly. Different monoclonal antibody (MAb) and vaccine candidates are in development worldwide and will hopefully become available within the near future. To implement such RSV vaccines, adequate decisions about immunization schedules and the different target group(s) need to be made, for which the assessment of antibody levels against RSV is essential. To survey RSV antigen-specific antibody levels, we developed a serological multiplex immunoassay (MIA) that determines and distinguishes antibodies against the five RSV glycoproteins postfusion F, prefusion F, Ga, Gb, and N simultaneously. The standardized RSV pentaplex MIA is sensitive, highly reproducible, and specific for the five RSV proteins. The preservation of the conformational structure of the immunodominant site Ø of prefusion F after conjugation to the beads has been confirmed. Importantly, good correlation is obtained between the microneutralization test and the MIA for all five proteins, resulting in an arbitrarily chosen cutoff value of prefusion F antibody levels for seropositivity in the microneutralization assay. The wide dynamic range requiring only two serum sample dilutions makes the RSV-MIA a high-throughput assay very suitable for (large-scale) serosurveillance and vaccine clinical studies

    Development and Standardization of a High-Throughput Multiplex Immunoassay for the Simultaneous Quantification of Specific Antibodies to Five Respiratory Syncytial Virus Proteins.

    No full text
    Human respiratory syncytial virus (RSV) is a major cause of severe respiratory disease in (premature) newborns and causes respiratory illness in the elderly. Different monoclonal antibody (MAb) and vaccine candidates are in development worldwide and will hopefully become available within the near future. To implement such RSV vaccines, adequate decisions about immunization schedules and the different target group(s) need to be made, for which the assessment of antibody levels against RSV is essential. To survey RSV antigen-specific antibody levels, we developed a serological multiplex immunoassay (MIA) that determines and distinguishes antibodies against the five RSV glycoproteins postfusion F, prefusion F, Ga, Gb, and N simultaneously. The standardized RSV pentaplex MIA is sensitive, highly reproducible, and specific for the five RSV proteins. The preservation of the conformational structure of the immunodominant site Ø of prefusion F after conjugation to the beads has been confirmed. Importantly, good correlation is obtained between the microneutralization test and the MIA for all five proteins, resulting in an arbitrarily chosen cutoff value of prefusion F antibody levels for seropositivity in the microneutralization assay. The wide dynamic range requiring only two serum sample dilutions makes the RSV-MIA a high-throughput assay very suitable for (large-scale) serosurveillance and vaccine clinical studies.IMPORTANCE In view of vaccine and monoclonal development to reduce hospitalization and death due to lower respiratory tract infection caused by RSV, assessment of antibody levels against RSV is essential. This newly developed multiplex immunoassay is able to measure antibody levels against five RSV proteins simultaneously. This can provide valuable insight into the dynamics of (maternal) antibody levels and RSV infection in infants and toddlers during the first few years of life, when primary RSV infection occurs

    Development and Standardization of a High-Throughput Multiplex Immunoassay for the Simultaneous Quantification of Specific Antibodies to Five Respiratory Syncytial Virus Proteins

    No full text
    Human respiratory syncytial virus (RSV) is a major cause of severe respiratory disease in (premature) newborns and causes respiratory illness in the elderly. Different monoclonal antibody (MAb) and vaccine candidates are in development worldwide and will hopefully become available within the near future. To implement such RSV vaccines, adequate decisions about immunization schedules and the different target group(s) need to be made, for which the assessment of antibody levels against RSV is essential. To survey RSV antigen-specific antibody levels, we developed a serological multiplex immunoassay (MIA) that determines and distinguishes antibodies against the five RSV glycoproteins postfusion F, prefusion F, Ga, Gb, and N simultaneously. The standardized RSV pentaplex MIA is sensitive, highly reproducible, and specific for the five RSV proteins. The preservation of the conformational structure of the immunodominant site Ø of prefusion F after conjugation to the beads has been confirmed. Importantly, good correlation is obtained between the microneutralization test and the MIA for all five proteins, resulting in an arbitrarily chosen cutoff value of prefusion F antibody levels for seropositivity in the microneutralization assay. The wide dynamic range requiring only two serum sample dilutions makes the RSV-MIA a high-throughput assay very suitable for (large-scale) serosurveillance and vaccine clinical studies.IMPORTANCE In view of vaccine and monoclonal development to reduce hospitalization and death due to lower respiratory tract infection caused by RSV, assessment of antibody levels against RSV is essential. This newly developed multiplex immunoassay is able to measure antibody levels against five RSV proteins simultaneously. This can provide valuable insight into the dynamics of (maternal) antibody levels and RSV infection in infants and toddlers during the first few years of life, when primary RSV infection occurs

    AZD1222-induced nasal antibody responses are shaped by prior SARS-CoV-2 infection and correlate with virologic outcomes in breakthrough infection

    No full text
    The nasal mucosa is an important initial site of host defense against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, intramuscularly administered vaccines typically do not achieve high antibody titers in the nasal mucosa. We measure anti-SARS-CoV-2 spike immunoglobulin G (IgG) and IgA in nasal epithelial lining fluid (NELF) following intramuscular vaccination of 3,058 participants from the immunogenicity substudy of a phase 3, double-blind, placebo-controlled study of AZD1222 vaccination (ClinicalTrials.gov: NCT04516746). IgG is detected in NELF collected 14 days following the first AZD1222 vaccination. IgG levels increase with a second vaccination and exceed pre-existing levels in baseline-SARS-CoV-2-seropositive participants. Nasal IgG responses are durable and display strong correlations with serum IgG, suggesting serum-to-NELF transudation. AZD1222 induces short-lived increases to pre-existing nasal IgA levels in baseline-seropositive vaccinees. Vaccinees display a robust recall IgG response upon breakthrough infection, with overall magnitudes unaffected by time between vaccination and illness. Mucosal responses correlate with reduced viral loads and shorter durations of viral shedding in saliva

    Molecular and phenotypic characteristics of RSV infections in infants during two nirsevimab randomized clinical trials

    No full text
    Abstract Nirsevimab is a monoclonal antibody that binds to the respiratory syncytial virus (RSV) fusion protein. During the Phase 2b (NCT02878330) and MELODY (NCT03979313) clinical trials, infants received one dose of nirsevimab or placebo before their first RSV season. In this pre-specified analysis, isolates from RSV infections were subtyped, sequenced and analyzed for nirsevimab binding site substitutions; subsequently, recombinant RSVs were engineered for microneutralization susceptibility testing. Here we show that the frequency of infections caused by subtypes A and B is similar across and within the two trials. In addition, RSV A had one and RSV B had 10 fusion protein substitutions occurring at >5% frequency. Notably, RSV B binding site substitutions were rare, except for the highly prevalent I206M:Q209R, which increases nirsevimab susceptibility; RSV B isolates from two participants had binding site substitutions that reduce nirsevimab susceptibility. Overall, >99% of isolates from the Phase 2b and MELODY trials retained susceptibility to nirsevimab

    Robust humoral and cellular recall responses to AZD1222 attenuate breakthrough SARS-CoV-2 infection compared to unvaccinated

    No full text
    Background: Breakthrough severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in coronavirus disease 2019 (COVID-19) vaccinees typically produces milder disease than infection in unvaccinated individuals. Methods: To explore disease attenuation, we examined COVID-19 symptom burden and immuno-virologic responses to symptomatic SARS-CoV-2 infection in participants (AZD1222: n=177/17,617; placebo: n=203/8,528) from a 2:1 randomized, placebo-controlled, phase 3 study of two-dose primary series AZD1222 (ChAdOx1 nCoV-19) vaccination (NCT04516746). Results: We observed that AZD1222 vaccinees had an overall lower incidence and shorter duration of COVID-19 symptoms compared with placebo recipients, as well as lower SARS-CoV-2 viral loads and a shorter median duration of viral shedding in saliva. Vaccinees demonstrated a robust antibody recall response versus placebo recipients with low-to-moderate inverse correlations with virologic endpoints. Vaccinees also demonstrated an enriched polyfunctional spike-specific Th-1-biased CD4+ and CD8+ T-cell response that was associated with strong inverse correlations with virologic endpoints. Conclusion: Robust immune responses following AZD1222 vaccination attenuate COVID-19 disease severity and restrict SARS-CoV-2 transmission potential by reducing viral loads and the duration of viral shedding in saliva. Collectively, these analyses underscore the essential role of vaccination in mitigating the COVID-19 pandemic
    corecore