2,661 research outputs found

    Silver-Zinc Battery Separator Material Development

    Get PDF
    Ethylene/methyl acrylate copolymer synthesis for silver-zinc battery separator

    Observation and modeling of energetic particles at synchronous orbit on July 29, 1977

    Get PDF
    In the twelve hours following a worldwide storm, there was a series of at least four magnetospheric substorms, the last and largest of which exhibited an expansion phase onset at approximately 1200 UT. Data from six spacecraft in three general local time groupings (0300, 0700, and 1300 LT) were examined and vector magnetic field data and energetic electron and ion data from approximately 15 keV to 2 MeV were employed

    A Frequency Comb calibrated Solar Atlas

    Full text link
    The solar spectrum is a primary reference for the study of physical processes in stars and their variation during activity cycles. In Nov 2010 an experiment with a prototype of a Laser Frequency Comb (LFC) calibration system was performed with the HARPS spectrograph of the 3.6m ESO telescope at La Silla during which high signal-to-noise spectra of the Moon were obtained. We exploit those Echelle spectra to study the optical integrated solar spectrum . The DAOSPEC program is used to measure solar line positions through gaussian fitting in an automatic way. We first apply the LFC solar spectrum to characterize the CCDs of the HARPS spectrograph. The comparison of the LFC and Th-Ar calibrated spectra reveals S-type distortions on each order along the whole spectral range with an amplitude of +/-40 m/s. This confirms the pattern found by Wilken et al. (2010) on a single order and extends the detection of the distortions to the whole analyzed region revealing that the precise shape varies with wavelength. A new data reduction is implemented to deal with CCD pixel inequalities to obtain a wavelength corrected solar spectrum. By using this spectrum we provide a new LFC calibrated solar atlas with 400 line positions in the range of 476-530, and 175 lines in the 534-585 nm range. The new LFC atlas improves the accuracy of individual lines by a significant factor reaching a mean value of about 10 m/s. The LFC--based solar line wavelengths are essentially free of major instrumental effects and provide a reference for absolute solar line positions. We suggest that future LFC observations could be used to trace small radial velocity changes of the whole solar photospheric spectrum in connection with the solar cycle and for direct comparison with the predicted line positions of 3D radiative hydrodynamical models of the solar photosphere.Comment: Accept on the 15th of October 2013. 9 pages, 10 figures. ON-lINE data A&A 201

    Search for varying constants of nature from astronomical observation of molecules

    Full text link
    The status of searches for possible variation in the constants of nature from astronomical observation of molecules is reviewed, focusing on the dimensionless constant representing the proton-electron mass ratio ÎŒ=mp/me\mu=m_p/m_e. The optical detection of H2_2 and CO molecules with large ground-based telescopes (as the ESO-VLT and the Keck telescopes), as well as the detection of H2_2 with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope is discussed in the context of varying constants, and in connection to different theoretical scenarios. Radio astronomy provides an alternative search strategy bearing the advantage that molecules as NH3_3 (ammonia) and CH3_3OH (methanol) can be used, which are much more sensitive to a varying ÎŒ\mu than diatomic molecules. Current constraints are âˆŁÎ”ÎŒ/ÎŒâˆŁ<5×10−6|\Delta\mu/\mu| < 5 \times 10^{-6} for redshift z=2.0−4.2z=2.0-4.2, corresponding to look-back times of 10-12.5 Gyrs, and âˆŁÎ”ÎŒ/ÎŒâˆŁ<1.5×10−7|\Delta\mu/\mu| < 1.5 \times 10^{-7} for z=0.88z=0.88, corresponding to half the age of the Universe (both at 3σ\sigma statistical significance). Existing bottlenecks and prospects for future improvement with novel instrumentation are discussed.Comment: Contribution to Workshop "High Performance Clocks in Space" at the International Space Science Institute, Bern 201

    MeV magnetosheath ions energized at the bow shock

    Get PDF
    A causal relationship between midlatitude magnetosheath energetic ions and bow shock magnetic geometry was previously established for ion energy up to 200 keV e−1 for the May 4, 1998, storm event. This study demonstrates that magnetosheath ions with energies above 200 keV up to 1 MeV simply extend the ion spectrum to form a power law tail. Results of cross-correlation analysis suggest that these ions also come directly from the quasi-parallel bow shock, not the magnetosphere. This is confirmed by a comparison of energetic ion fluxes simultaneously measured in the magnetosheath and at the quasi-parallel bow shock when both regions are likely connected by the magnetic field lines. We suggest that ions are accelerated at the quasi-parallel bow shock to energies as high as 1 MeV and subsequently transported into the magnetosheath during this event

    Gradual diffusion and punctuated phase space density enhancements of highly relativistic electrons: Van Allen Probes observations

    Get PDF
    Abstract The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth\u27s radiation belts. Observations (up to E ~10 MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) changes during March 2013 in the context of the first year of Van Allen Probes operation. This March period demonstrates the classic signatures both of inward radial diffusive energization and abrupt localized acceleration deep within the outer Van Allen zone (L ~4.0 ± 0.5). This reveals graphically that both competing mechanisms of multi-MeV electron energization are at play in the radiation belts, often acting almost concurrently or at least in rapid succession. Key Points Clear observations to higher energy than ever before Precise detection of where and how acceleration takes place Provides new eyes on megaelectron Volt

    Information and Communication Technology (ICT) and International Business Travel: Mobility Allies?

    Get PDF
    Like forecasts about the paperless office, technological solutions to the problem of international business travel continue to be deferred. As with the increased use of office paper, international business travel is defying predictions of its decline. There is growing evidence to suggest that business sectors which seem ideally placed to substitute information and communication technology (ICT) for travel, are actually generating more physical travel than other sectors. This paper develops a case study of the Irish software industry to exemplify why international travel is not diminishing in importance how and the ICT and business travel relationship is changing in this sector. The paper presents research findings that suggest that a cycle of substitution, generation and modification relationships have occurred as mobility interdependencies have developed.Peer Reviewe

    A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    Full text link
    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut f\"ur Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut f\"ur Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.Comment: 9 pages, 2 figures; Solar Physics 277 (2012

    Modern optical astronomy: technology and impact of interferometry

    Get PDF
    The present `state of the art' and the path to future progress in high spatial resolution imaging interferometry is reviewed. The review begins with a treatment of the fundamentals of stellar optical interferometry, the origin, properties, optical effects of turbulence in the Earth's atmosphere, the passive methods that are applied on a single telescope to overcome atmospheric image degradation such as speckle interferometry, and various other techniques. These topics include differential speckle interferometry, speckle spectroscopy and polarimetry, phase diversity, wavefront shearing interferometry, phase-closure methods, dark speckle imaging, as well as the limitations imposed by the detectors on the performance of speckle imaging. A brief account is given of the technological innovation of adaptive-optics (AO) to compensate such atmospheric effects on the image in real time. A major advancement involves the transition from single-aperture to the dilute-aperture interferometry using multiple telescopes. Therefore, the review deals with recent developments involving ground-based, and space-based optical arrays. Emphasis is placed on the problems specific to delay-lines, beam recombination, polarization, dispersion, fringe-tracking, bootstrapping, coherencing and cophasing, and recovery of the visibility functions. The role of AO in enhancing visibilities is also discussed. The applications of interferometry, such as imaging, astrometry, and nulling are described. The mathematical intricacies of the various `post-detection' image-processing techniques are examined critically. The review concludes with a discussion of the astrophysical importance and the perspectives of interferometry.Comment: 65 pages LaTeX file including 23 figures. Reviews of Modern Physics, 2002, to appear in April issu
    • 

    corecore