14 research outputs found

    Phosphorus limitation of bacterial growth in high Arctic lakes and ponds

    No full text
    Water from lakes and tundra ponds on Banks, Melville, Ellef-Ringnes, Ellesmere and Devon Island (74–79°N, 82–116°W) in the Canadian high Arctic was studied in batch culture experiments to test whether nitrogen, phosphorus or organic carbon limited bacterial growth and biomass accumulation. Water samples containing indigenous bacteria were amended with carbon (glucose), nitrogen (nitrate) or phosphorus (phosphate), either alone or in combination, and were incubated in the dark at ambient temperatures. Bacterial growth was measured as the rate of protein synthesis and the accumulation of bacterial cells. Bacterial growth was significantly enhanced in all cultures amended with phosphorus. There was no indication of primary carbon or nitrogen limitation in either lakes or ponds, but the combined addition of phosphorus and either carbon, nitrogen or both, had a positive effect on bacterial growth in the lakes but not in ponds. This contrasting response in Arctic lakes and ponds can be predicted from in situ concentrations of dissolved nutrients: total dissolved phosphorus was low in all systems (= 10 μg L−1), whereas total dissolved nitrogen and organic carbon was on average 24 and 7 times higher in ponds. Pelagic bacteria in lakes and ponds of the high Arctic seem to follow the general pattern of phosphorus limitation previously observed in many temperate and tropical freshwater systems.Wilhelm Granéli, Stefan Bertilsson, Aline Philiber

    The influence of animals on phosphorus cycling in lake ecosystems

    No full text
    Aquatic animals directly influence the cycling of phosphorus in lakes through feeding and excretion. Traditionally, animals (zooplankton, benthic invertebrates and fish) have been assigned only minor roles in the process of freshwater phosphorus cycling. They were regarded as consumers without much regulating influence. Today there is growing evidence that animals, predators and herbivores, directly or indirectly can control biomass of primary producers and internal cycling of phosphorus. This paper summarizes different mechanisms of transformation and translocation of phosphorus via different groups of organisms

    Effect of tertiary sewage effluent additions on Prymnesium parvum cell toxicity and stable isotope ratios

    No full text
    We investigated the ability of the ichthyotoxic haptophyte Prymnesium parvum to use sewage-originated nutrients applying stable carbon (C) and nitrogen (N) isotope techniques. P. parvum was cultured under N and phosphorus (P) sufficient and deficient conditions in either sewage effluent-based medium or in a nitrate- and phosphate-based control. Cell densities and toxicities were monitored and stable carbon N isotopes signatures (delta C-13 and delta N-15) of P. parvum and the sewage effluent analysed. Nitrogen and P sufficient cultures achieved the highest biomass followed by P and N deficient cultures, regardless of sewage effluent additions. The P deficient cultures with sewage effluent had higher toxicity, estimated as haemolytic activity (9.4 +/- 0 x 10(-5) mg Saponin equiv. cell(-1)) compared to the P deficient control and to all N deficient and NP sufficient cultures. Nutrient deficient conditions had no effect on the cell delta N-15, but a decreasing effect on delta C-13 in the inorganic N deficient treatment. Growth in sewage-based media was followed by a substantial increase in the cell delta N-15 (10.4-16.1.60) compared to the control treatments (2.4-4.9%o), showing that P. parvum is capable of direct use of sewage-originated N, inorganic as well as organic. Uptake of terrestrial derived C in the sewage treatments was confirmed by a decrease in cell delta C-13, implying that P. parvum is able to utilize organic nutrients in sewage effluent. (C) 2008 Elsevier B.V. All rights reserved

    Carbon isotope signature variability among cultured microalgae: Influence of species, nutrients and growth

    No full text
    In this study we have investigated whether the carbon isotopic signature differs between different groups and species of marine phytoplankton depending on growth phase, nutrient conditions and salinity. The 15 investigated algal species, representing the Bacillariophyceae, Chlorophyceae, Cryptophyceae, Cyanophyceae, Dinophyceae and Haptophyceae classes were grown in batch monocultures and analysed for delta C-13 in both exponential and stationary phase. For all the cultured species, delta C-13 signatures ranged from -23.5 parts per thousand (Imantonia sp.) to - 12.3 parts per thousand (Nodulania spumigena) in the exponential phase and from - 18.8 parts per thousand (Amphidinium carterae) to - 8.0 parts per thousand (Anabaena lemmermannii) in the stationary phase. Three species (Dunaliella tertiolecta, Rhodomonas sp.. Heterocapsa triquetra) were also grown under nutrient sufficient and nitrogen or phosphorus deficient conditions. Nitrogen limitation resulted in a more negative delta C-13 signature, whereas no effect could be observed during phosphorus limitation compared to nutrient sufficient conditions. Growth of Prymnesium parvum in two different salinities resulted in a more negative delta C-13 signature in the 26 parts per thousand-media compared to growth in 7 parts per thousand-media. Our results show that the carbon isotopic signature of phytoplankton may be affected by salinity, differ among different phytoplankton species, between exponential and stationary phase, as well as between nutrient treatments. (C) 2009 Elsevier B.V. All rights reserved

    Bacterial and phytoplankton nutrient limitation in tropical marine waters, and a coastal lake in Brazil

    No full text
    Bioassay experiments were performed two times (with 2 years in between) in order to investigate if nitrogen (N, ammonium), phosphorus (P, phosphate) and carbon (C, glucose) additions would stimulate the growth of bacteria and phytoplankton differently in three different tropical aquatic environments. The water and their indigenous microbial communities were taken from a freshwater coastal lake (Cabiunas), a coastal (Anjos), and an offshore marine station (Sonar) in the Atlantic outside Cabo Frio, Rio de Janeiro State, Brazil. Ammonium, phosphate and glucose were added alone or in combination to triplicate bottles. In the lake, P seemed to be the primary limiting factor during the first experiment, since both bacterial production and phytoplankton growth was stimulated by the P addition. Two years later, however, addition of P inhibited phytoplankton growth. During both years, C was closely co-limiting for bacteria since CP additions increased the response considerably. For both the coastal and offshore seawater stations, phytoplankton growth was clearly stimulated by N addition in both years and the bacteria responded either to the P, N or C additions (alone or in combination). To conclude, the results from these tropical aquatic systems show that it is possible that phytoplankton and bacteria may compete for a common resource (P) in lakes, but can be limited by different inorganic nutrients in marine waters as well as lakes, suggesting that phytoplankton and bacteria do not necessarily compete for the same growth limiting nutrient in these environments. (C) 2012 Elsevier B.V. All rights reserved

    How effective are created or restored freshwater wetlands for nitrogen and phosphorus removal? A systematic review

    No full text
    Background: Eutrophication of aquatic environments is a major environmental problem in large parts of the world. In Europe, EU legislation (the Water Framework Directive and the Marine Strategy Framework Directive), international conventions (OSPAR, HELCOM) and national environmental objectives emphasize the need to reduce the input of nutrients to freshwater and marine environments. A widely used method to achieve this is to allow water to pass through a created or restored wetland. However, the large variation in measured nutrient removal rates in such wetlands calls for a systematic review. Methods: Searches for primary studies were performed in electronic databases and on the internet. One author performed the screening of all retrieved articles at the title and abstract level. To check that the screening was consistent and complied with the agreed inclusion/exclusion criteria, subsets of 100 articles were screened by the other authors. When screening at full-text level the articles were evenly distributed among the authors. Kappa tests were used to evaluate screening consistency. Relevant articles remaining after screening were critically appraised and assigned to three quality categories, from two of which data were extracted. Quantitative synthesis consists of meta-analyses and response surface analyses. Regressions were performed using generalized additive models that can handle nonlinear relationships and interaction effects. Results: Searches generated 5853 unique records. After screening on relevance and critical appraisal, 93 articles including 203 wetlands were used for data extraction. Most of the wetlands were situated in Europe and North America. The removal rate of both total nitrogen (TN) and total phosphorus (TP) is highly dependent on the loading rate. Significant relationships were also found for annual average air temperature (T) and wetland area (A). Median removal rates of TN and TP were 93 and 1.2 g m(-2) year(-1.), respectively. Removal efficiency for TN was significantly correlated with hydrologic loading rate (HLR) and T, and the median was 37 %, with a 95 % confidence interval of 29-44 %. Removal efficiency for TP was significantly correlated with inlet TP concentration, HLR, T, and A. Median TP removal efficiency was 46 % with a 95 % confidence interval of 37-55 %. Although there are small differences in average values between the two quality categories, the variation is considerably smaller among high quality studies compared to studies with lower quality. This suggests that part of the large variation between studies may be explained by less rigorous study designs. Conclusions: On average, created and restored wetlands significantly reduce the transport of TN and TP in treated wastewater and urban and agricultural runoff, and may thus be effective in efforts to counteract eutrophication. However, restored wetlands on former farmland were significantly less efficient than other wetlands at TP removal. In addition, wetlands with precipitation-driven HLRs and/or hydrologic pulsing show significantly lower TP removal efficiencies compared to wetlands with controlled HLRs. Loading rate (inlet concentrations x hydraulic loading rates) needs to be carefully estimated as part of the wetland design. More research is needed on the effects of hydrologic pulsing on wetlands. There is also a lack of evidence for long-term (&amp;gt;20 years) performance of wetlands.Funding Agencies|Mistra Council for Evidence-based Environmental Management (Mistra EviEM); Swedish Foundation for Strategic Environmental Research (Mistra)Swedish Foundation for Strategic Research</p

    Probing redox reactions of immobilized cytochrome c using evanescent wave cavity ring-down spectroscopy in a thin-layer electrochemical cell

    No full text
    We report the use of evanescent wave cavity ring-down spectroscopy (EW-CRDS) to monitor the reduction by ethylenediaminetetraacetic acid iron(II) complex, [FeEDTA](2-), of an adsorbed layer of oxidized cytochrome c immobilized on fused silica. The adsorption of cytochrome c at the silica-water interface was also probed using EW-CRDS and found to be in qualitative agreement with previous studies. The reduction of the adsorbed cytochrome c was achieved by using a strategically positioned electrode to electrogenerate FeEDTA(2-), which diffused to the silica surface and reduced the cytochrome c. The difference in the absorption spectra of the reduced and oxidized forms of cytochrome c at 400 nm allowed the direct monitoring of the electron transfer in real time. Using finite-element modelling, the rate constant of electron transfer (ET) between FeEDTA(2-) and cytochrome c was found to be 4.3(+/- 0.6) x 10(-9) cm s(-1) equivalent to 2.7(+/- 0.4) M-1 s(-1). The latter value is considerably lower than previously reported ET rate constants between cytochrome c and FeEDTA(2-) in solution, which can be attributed to the confinement of the immobilized cytochrome c on the surface and possible effects from molecular crowding. This study highlights the importance of new methods which can be used to study ET at interfaces and opens up the possibility of studying ET to proteins in biologically relevant environments using EW-CRDS
    corecore