111 research outputs found

    IFITM proteins drive type 2 T helper cell differentiation and exacerbate allergic airway inflammation

    Get PDF
    T cells differentiated more efficiently to Th1, whereas Th2 differentiation was inhibited. Ifitm-family-deficient mice, but not Ifitm3-deficient mice, were less susceptible than WT to induction of allergic airways disease, with a weaker Th2 response and less severe disease and lower Il4 but higher Ifng expression and IL-27 secretion. Thus, the Ifitm family is important in adaptive immunity, influencing Th1/Th2 polarization, and Th2 immunopathology

    Genome-wide array comparative genomic hybridization analysis reveals distinct amplifications in osteosarcoma

    Get PDF
    BACKGROUND: Osteosarcoma is a highly malignant bone neoplasm of children and young adults. It is characterized by extremely complex karyotypes and high frequency of chromosomal amplifications. Currently, only the histological response (degree of necrosis) to therapy represent gold standard for predicting the outcome in a patient with non-metastatic osteosarcoma at the time of definitive surgery. Patients with lower degree of necrosis have a higher risk of relapse and poor outcome even after chemotherapy and complete resection of the primary tumor. Therefore, a better understanding of the underlying molecular genetic events leading to tumor initiation and progression could result in the identification of potential diagnostic and therapeutic targets. METHODS: We used a genome-wide screening method – array based comparative genomic hybridization (array-CGH) to identify DNA copy number changes in 48 patients with osteosarcoma. We applied fluorescence in situ hybridization (FISH) to validate some of amplified clones in this study. RESULTS: Clones showing gains (79%) were more frequent than losses (66%). High-level amplifications and homozygous deletions constitute 28.6% and 3.8% of tumor genome respectively. High-level amplifications were present in 238 clones, of which about 37% of them showed recurrent amplification. Most frequently amplified clones were mapped to 1p36.32 (PRDM16), 6p21.1 (CDC5L, HSPCB, NFKBIE), 8q24, 12q14.3 (IFNG), 16p13 (MGRN1), and 17p11.2 (PMP22 MYCD, SOX1,ELAC27). We validated some of the amplified clones by FISH from 6p12-p21, 8q23-q24, and 17p11.2 amplicons. Homozygous deletions were noted for 32 clones and only 7 clones showed in more than one case. These 7 clones were mapped to 1q25.1 (4 cases), 3p14.1 (4 cases), 13q12.2 (2 cases), 4p15.1 (2 cases), 6q12 (2 cases), 6q12 (2 cases) and 6q16.3 (2 cases). CONCLUSIONS: This study clearly demonstrates the utility of array CGH in defining high-resolution DNA copy number changes and refining amplifications. The resolution of array CGH technology combined with human genome database suggested the possible target genes present in the gained or lost clones

    The "Rights Awakening" of Chinese Migrant Workers: Beyond the Generational Perspective

    Get PDF
    In the spring of 2010, the strike of the Honda workers in Nanhai instigated an on-going discourse on the rights awakening of the new generation of migrant workers. Since then, much has been written about these young workers, generally described as more pro-active and ready to stand up against their employers than the older and more subservient generation. Drawing from statistical findings from two factory-gate surveys in the metal mechanics and garment sectors in Shenzhen, this paper tests two hypotheses: (a) that workers of the younger generation are more cognizant of their legal rights than older workers; (b) that the younger generation wants to work fewer hours and to enjoy life more. We argue that this popular image of the younger generation of migrant workers is one-dimensional and reductive, as it focuses only on generational differences as an explanatory factor for worker activism, while ignoring other issues such as types of industries and payment systems. In this paper, we purport that these elements play important roles in shaping the attitude of this younger generation toward their work and rights

    Hsp90 Interacts Specifically with Viral RNA and Differentially Regulates Replication Initiation of Bamboo mosaic virus and Associated Satellite RNA

    Get PDF
    Host factors play crucial roles in the replication of plus-strand RNA viruses. In this report, a heat shock protein 90 homologue of Nicotiana benthamiana, NbHsp90, was identified in association with partially purified replicase complexes from BaMV-infected tissue, and shown to specifically interact with the 3′ untranslated region (3′ UTR) of BaMV genomic RNA, but not with the 3′ UTR of BaMV-associated satellite RNA (satBaMV RNA) or that of genomic RNA of other viruses, such as Potato virus X (PVX) or Cucumber mosaic virus (CMV). Mutational analyses revealed that the interaction occurs between the middle domain of NbHsp90 and domain E of the BaMV 3′ UTR. The knockdown or inhibition of NbHsp90 suppressed BaMV infectivity, but not that of satBaMV RNA, PVX, or CMV in N. benthamiana. Time-course analysis further revealed that the inhibitory effect of 17-AAG is significant only during the immediate early stages of BaMV replication. Moreover, yeast two-hybrid and GST pull-down assays demonstrated the existence of an interaction between NbHsp90 and the BaMV RNA-dependent RNA polymerase. These results reveal a novel role for NbHsp90 in the selective enhancement of BaMV replication, most likely through direct interaction with the 3′ UTR of BaMV RNA during the initiation of BaMV RNA replication

    RNA-Seq of Human Neurons Derived from iPS Cells Reveals Candidate Long Non-Coding RNAs Involved in Neurogenesis and Neuropsychiatric Disorders

    Get PDF
    Genome-wide expression analysis using next generation sequencing (RNA-Seq) provides an opportunity for in-depth molecular profiling of fundamental biological processes, such as cellular differentiation and malignant transformation. Differentiating human neurons derived from induced pluripotent stem cells (iPSCs) provide an ideal system for RNA-Seq since defective neurogenesis caused by abnormalities in transcription factors, DNA methylation, and chromatin modifiers lie at the heart of some neuropsychiatric disorders. As a preliminary step towards applying next generation sequencing using neurons derived from patient-specific iPSCs, we have carried out an RNA-Seq analysis on control human neurons. Dramatic changes in the expression of coding genes, long non-coding RNAs (lncRNAs), pseudogenes, and splice isoforms were seen during the transition from pluripotent stem cells to early differentiating neurons. A number of genes that undergo radical changes in expression during this transition include candidates for schizophrenia (SZ), bipolar disorder (BD) and autism spectrum disorders (ASD) that function as transcription factors and chromatin modifiers, such as POU3F2 and ZNF804A, and genes coding for cell adhesion proteins implicated in these conditions including NRXN1 and NLGN1. In addition, a number of novel lncRNAs were found to undergo dramatic changes in expression, one of which is HOTAIRM1, a regulator of several HOXA genes during myelopoiesis. The increase we observed in differentiating neurons suggests a role in neurogenesis as well. Finally, several lncRNAs that map near SNPs associated with SZ in genome wide association studies also increase during neuronal differentiation, suggesting that these novel transcripts may be abnormally regulated in a subgroup of patients

    Advancing brain barriers RNA sequencing: guidelines from experimental design to publication

    Get PDF
    Background: RNA sequencing (RNA-Seq) in its varied forms has become an indispensable tool for analyzing differential gene expression and thus characterization of specific tissues. Aiming to understand the brain barriers genetic signature, RNA seq has also been introduced in brain barriers research. This has led to availability of both, bulk and single-cell RNA-Seq datasets over the last few years. If appropriately performed, the RNA-Seq studies provide powerful datasets that allow for significant deepening of knowledge on the molecular mechanisms that establish the brain barriers. However, RNA-Seq studies comprise complex workflows that require to consider many options and variables before, during and after the proper sequencing process.Main body: In the current manuscript, we build on the interdisciplinary experience of the European PhD Training Network BtRAIN (https://www.btrain-2020.eu/) where bioinformaticians and brain barriers researchers collaborated to analyze and establish RNA-Seq datasets on vertebrate brain barriers. The obstacles BtRAIN has identified in this process have been integrated into the present manuscript. It provides guidelines along the entire workflow of brain barriers RNA-Seq studies starting from the overall experimental design to interpretation of results. Focusing on the vertebrate endothelial blood–brain barrier (BBB) and epithelial blood-cerebrospinal-fluid barrier (BCSFB) of the choroid plexus, we provide a step-by-step description of the workflow, highlighting the decisions to be made at each step of the workflow and explaining the strengths and weaknesses of individual choices made. Finally, we propose recommendations for accurate data interpretation and on the information to be included into a publication to ensure appropriate accessibility of the data and reproducibility of the observations by the scientific community.Conclusion: Next generation transcriptomic profiling of the brain barriers provides a novel resource for understanding the development, function and pathology of these barrier cells, which is essential for understanding CNS homeostasis and disease. Continuous advancement and sophistication of RNA-Seq will require interdisciplinary approaches between brain barrier researchers and bioinformaticians as successfully performed in BtRAIN. The present guidelines are built on the BtRAIN interdisciplinary experience and aim to facilitate collaboration of brain barriers researchers with bioinformaticians to advance RNA-Seq study design in the brain barriers community

    Physiological Correlates of Volunteering

    Get PDF
    We review research on physiological correlates of volunteering, a neglected but promising research field. Some of these correlates seem to be causal factors influencing volunteering. Volunteers tend to have better physical health, both self-reported and expert-assessed, better mental health, and perform better on cognitive tasks. Research thus far has rarely examined neurological, neurochemical, hormonal, and genetic correlates of volunteering to any significant extent, especially controlling for other factors as potential confounds. Evolutionary theory and behavioral genetic research suggest the importance of such physiological factors in humans. Basically, many aspects of social relationships and social activities have effects on health (e.g., Newman and Roberts 2013; Uchino 2004), as the widely used biopsychosocial (BPS) model suggests (Institute of Medicine 2001). Studies of formal volunteering (FV), charitable giving, and altruistic behavior suggest that physiological characteristics are related to volunteering, including specific genes (such as oxytocin receptor [OXTR] genes, Arginine vasopressin receptor [AVPR] genes, dopamine D4 receptor [DRD4] genes, and 5-HTTLPR). We recommend that future research on physiological factors be extended to non-Western populations, focusing specifically on volunteering, and differentiating between different forms and types of volunteering and civic participation

    Articulando el XII Congreso Mesoamericano de abejas nativas: la experiencia desde la virtualidad

    No full text
    Poster para presentar en el XIII Congreso Mesoamericano de Abejas Nativas ( 2023 : octubre 04-06 : Ciudad Guzmán, Jalisco, México); que se realizó en el Centro Universitario del Sur.Se elabora en el año 2019, la primera edición en modalidad virtual del XII Congreso Mesoamericano de Abejas Nativas a cargo del CINAT-UNA, del 01 al 07 de noviembre 2021; por motivo a la crisis mundial a causa del Covid-19. La I Feria Virtual tuvo 28 stands de meliponicultores, emprendedores y organizaciones vinculadas con abejas nativas. Este espacio recibió 627visitantes durante el congreso -con interacción expositores vía chat o video-llamada- y 635 en las semanas posteriores (total 1262 usuarios). La modalidad permitió identificar grandes bondades y potencialidades del desarrollo virtual del Congreso, en cuanto a la riqueza de datos obtenidos y métricas del perfil de participante, la amplitud y alcance de las interacciones y el material audiovisual.In 2019, the first virtual edition of the XII Mesoamerican Congress of Native Bees will be held by CINAT-UNA, from November 1 to 7, 2021, due to the global crisis caused by Covid-19. The I Virtual Fair had 28 stands of meliponiculturists, entrepreneurs and organizations related to native bees. This space received 627 visitors during the congress -with interaction with exhibitors via chat or video-call- and 635 in the following weeks (total 1262 users). This modality made it possible to identify great benefits and potentialities of the virtual development of the Congress, in terms of the wealth of data obtained and metrics of the participant profile, the breadth and scope of the interactions and the audiovisual material.Universidad Nacional, Costa RicaCentro de Investigaciones Apícolas Tropicales (CINAT
    corecore