85 research outputs found
Kainic acid-induced eye enlargement in chickens: differential effects on anterior and posterior segments
Intravitreal injections of kainic acid were used to examine the significance of normal retinal activity for eye growth in chickens, this acid being chosen because of its known, selective neurotoxic effects on cells in the chicken retina. A 6 nmole dose of kainic significantly reduces amacrine cell numbers when used in very young chickens, while higher doses of kainic acid also affect bipolar and horizontal cell numbers. The effects of intravitreal injection of kainic acid on eye growth were assessed 4 weeks after treatment. A 200 nmole dose of kainic acid, used with day-old and 14-day-old chickens, had opposing effects on the anterior and posterior segments of the eye; while growth of the anterior segment was inhibited, the posterior segment was enlarged, predominantly in the equatorial direction. A 20 nmole dose of this acid similarly affected growth in 14-day-old chickens, but in day-old chickens, the anterior segment was also enlarged and the overall eye enlargement had an axial bias. Myopia was the most common refractive error associated with both patterns of development. A 2 nmole dose of kainic acid was without effect on eye growth. Parallels are drawn between these eye enlargement phenomena and those described in chickens whose visual environments have been manipulated. Our results indicate that normal retinal activity is fundamental to normal eye growth in chickens, and furthermore, that growth of the anterior and posterior segments of the chicken eye are independently regulated
Modulation of constant light effects on the eye by ciliary ganglionectomy and optic nerve section
AbstractOur previous studies have shown that an environment of constant light (CL) can lead to development of high degree of hyperopia in newborn chicks by inducing severe corneal flattening, and compensatory growth of the vitreous chamber. We wish to know whether the abnormal eye growth and progressive hyperopia under CL conditions is accomplished by a mechanism that uses the visual processing pathways of the central nervous system (CNS) or by a mechanism located in the eye. Thirty white leghorn chicks (Cornell K-strain) were raised under 12 h light/12 h dark (12L/12D) for either optic nerve section (ONS) or ciliary ganglion section (CGS). Another 30 chicks were raised under CL for ONS or CGS. Refractive states and corneal curvatures were measured by infrared (IR) photoretinoscopy and IR keratometry, respectively. The axial lengths of the ocular components were measured by A-scan ultrasonography. Both ONS and CGS surgery produced dilated pupils and accommodative paralysis. Four weeks after surgery, CGS eyes exhibited a hyperopic defocus, flatter cornea, and shorter vitreous chamber depth under both CL and normal conditions, whereas ONS eyes showed a smaller radius of corneal curvature and shallow vitreous chamber only in the normal light cycle group. CGS eyes of CL chicks showed significantly deeper vitreous chambers than did fellow control eyes. Our results indicate that optic nerve section does not seem to influence CL effects. Thus, local mechanisms may play a major role in the ocular development of chicks. The ciliary nerve is necessary for the normal corneal and anterior chamber growth, and prevents CL effects. The progressively increasing vitreous chamber depth under CL may be influenced by both local and central mechanisms
IMI - Myopia Control Reports Overview and Introduction
With the growing prevalence of myopia, already at epidemic levels in some countries, there is an urgent need for new management approaches. However, with the increasing number of research publications on the topic of myopia control, there is also a clear necessity for agreement and guidance on key issues, including on how myopia should be defined and how interventions, validated by well-conducted clinical trials, should be appropriately and ethically applied. The International Myopia Institute (IMI) reports the critical review and synthesis of the research evidence to date, from animal models, genetics, clinical studies, and randomized controlled trials, by more than 85 multidisciplinary experts in the field, as the basis for the recommendations contained therein. As background to the need for myopia control, the risk factors for myopia onset and progression are reviewed. The seven generated reports are summarized: (1) Defining and Classifying Myopia, (2) Experimental Models of Emmetropization and Myopia, (3) Myopia Genetics, (4) Interventions for Myopia Onset and Progression, (5) Clinical Myopia Control Trials and Instrumentation, (6) Industry Guidelines and Ethical Considerations for Myopia Control, and (7) Clinical Myopia Management Guidelines
IMI 2021 Yearly Digest
PURPOSE. The International Myopia Institute (IMI) Yearly Digest highlights new research considered to be of importance since the publication of the first series of IMI white papers. METHODS. A literature search was conducted for articles on myopia between 2019 and mid-2020 to inform definitions and classifications, experimental models, genetics, interventions, clinical trials, and clinical management. Conference abstracts from key meetings in the same period were also considered. RESULTS. One thousand articles on myopia have been published between 2019 and mid-2020. Key advances include the use of the definition of premyopia in studies currently under way to test interventions in myopia, new definitions in the field of pathologicmyopia, the role of new pharmacologic treatments in experimental models such as intraocular pressure-lowering latanoprost, a large meta-analysis of refractive error identifying 336 new genetic loci, new clinical interventions such as the defocus incorporated multisegment spectacles and combination therapy with low-dose atropine and orthokeratology (OK), normative standards in refractive error, the ethical dilemma of a placebo control group when myopia control treatments are established, reporting the physical metric of myopia reduction versus a percentage reduction, comparison of the risk of pediatric OK wear with risk of vision impairment in myopia, the justification of preventing myopic and axial length increase versus quality of life, and future vision loss. CONCLUSIONS. Large amounts of research in myopia have been published since the IMI 2019 white papers were released. The yearly digest serves to highlight the latest research and advances in myopia.Peer reviewe
Candidate high myopia loci on chromosomes 18p and 12q do not play a major role in susceptibility to common myopia
BACKGROUND: To determine whether previously reported loci predisposing to nonsyndromic high myopia show linkage to common myopia in pedigrees from two ethnic groups: Ashkenazi Jewish and Amish. We hypothesized that these high myopia loci might exhibit allelic heterogeneity and be responsible for moderate /mild or common myopia. METHODS: Cycloplegic and manifest refraction were performed on 38 Jewish and 40 Amish families. Individuals with at least -1.00 D in each meridian of both eyes were classified as myopic. Genomic DNA was genotyped with 12 markers on chromosomes 12q21-23 and 18p11.3. Parametric and nonparametric linkage analyses were conducted to determine whether susceptibility alleles at these loci are important in families with less severe, clinical forms of myopia. RESULTS: There was no strong evidence of linkage of common myopia to these candidate regions: all two-point and multipoint heterogeneity LOD scores were < 1.0 and non-parametric linkage p-values were > 0.01. However, one Amish family showed slight evidence of linkage (LOD>1.0) on 12q; another 3 Amish families each gave LOD >1.0 on 18p; and 3 Jewish families each gave LOD >1.0 on 12q. CONCLUSIONS: Significant evidence of linkage (LOD> 3) of myopia was not found on chromosome 18p or 12q loci in these families. These results suggest that these loci do not play a major role in the causation of common myopia in our families studied
Potassium Channel and NKCC Cotransporter Involvement in Ocular Refractive Control Mechanisms
Myopia affects well over 30% of adult humans globally. However, the underlying physiological mechanism is little understood. This study tested the hypothesis that ocular growth and refractive compensation to optical defocus can be controlled by manipulation of potassium and chloride ion-driven transretinal fluid movements to the choroid. Chicks were raised with +/−10D or zero power optical defocus rendering the focal plane of the eye in front of, behind, or at the level of the retinal photoreceptors respectively. Intravitreal injections of barium chloride, a non-specific inhibitor of potassium channels in the retina and RPE or bumetanide, a selective inhibitor of the sodium-potassium-chloride cotransporter were made, targeting fluid control mechanisms. Comparison of refractive compensation to 5mM Ba2+ and 10−5 M bumetanide compared with control saline injected eyes shows significant change for both positive and negative lens defocus for Ba2+ but significant change only for negative lens defocus with bumetanide ; ; ; ; ; ). Vitreous chamber depths showed a main effect for drug conditions with less depth change in response to defocus shown for Ba2+ relative to Saline, while bumetanide injected eyes showed a trend to increased depth without a significant interaction with applied defocus. The results indicate that both K channels and the NKCC cotransporter play a role in refractive compensation with NKCC blockade showing far more specificity for negative, compared with positive, lens defocus. Probable sites of action relevant to refractive control include the apical retinal pigment epithelium membrane and the photoreceptor/ON bipolar synapse. The similarities between the biometric effects of NKCC inhibition and biometric reports of the blockade of the retinal ON response, suggest a possible common mechanism. The selective inhibition of refractive compensation to negative lens in chick by loop diuretics such as bumetanide suggests that these drugs may be effective in the therapeutic management of human myopia
Active emmetropization - Evidence for its existence and ramifications for clinical practice
There is increasing evidence from animal studies in support of the concept of an active emmetropization mechanism which has potentially important clinical ramifications for the management of refractive errors. Recent research into refractive development and emmetropization is reviewed, with emphasis given to work involving the chick, tree shrew and monkey, which represent the three most widely used animal models in this field. The findings of this research are reviewed in a clinical context. Compensatory eye growth responses to focusing errors imposed by lenses represent the most compelling evidence for active emmetropization. These observations are complemented by other evidence showing recovery from induced refractive errors such as form-deprivation myopia. Of the animals listed above, chicks show the most impressive emmetropization, being able to compensate fully (using choroidal and scleral mechanisms) to lens powers ranging from +15 D to -10 D. The range of lens powers eliciting appropriate compensatory responses is narrower in the tree shrew and monkey, and the response patterns generally are also more complex to interpret. These data relate to young animals and together indicate refractive plasticity during development. Extrapolation of these findings to humans predicts that natural emmetropization will be inhibited in neonates by early intervention with prescription lenses, and that refractive correction of myopia will lead to accelerated progression. This convincing evidence for active emmetropization warrants due consideration in developing clinical management strategies for refractive errors
The effect of optic nerve section on form deprivation myopia in the guinea pig.
Myopia is induced when a growing eye wears a diffuser that deprives it of detailed spatial vision (form deprivation, FD). In chickens with optic nerve section (ONS), FD myopia still occurs, suggesting that the signals underlying myopia reside within the eye. As avian eyes differ from mammals, we asked whether local mechanisms also underlie FD myopia in a mammalian model. Young guinea pigs underwent either sham surgery followed by FD (SHAM + FD, n = 7); or ONS followed by FD (ONS + FD, n = 7); or ONS without FD (ONS, n = 9). FD was initiated 3 days after surgery with a diffuser that was worn on the surgically treated eye for 14 days. Animals with ONS + FD developed -8.9 D of relative myopia and elongated by 135 μm more than in their untreated eyes after 2 weeks of FD. These changes were significantly greater than those in SHAM + FD animals (-5.5 D and 40 μm of elongation after 14 days of FD), and reflected exaggerated elongation of the posterior vitreous chamber. The myopia reversed when FD was discontinued, despite ONS, but eyes did not recover back to normal (30 days after surgery, ONS + FD eyes still retained -3 D of relative myopia when SHAM+FD animals had returned to normal). No long-term residual myopia was present after ONS alone, ruling out a surgical artifact. Although the gross mechanism signaling myopic ocular growth and its recovery in the young mammalian eye does not require an intact optic nerve, its fine-tuning is disrupted by ONS
- …