956 research outputs found

    Qudit surface codes and gauge theory with finite cyclic groups

    Get PDF
    Surface codes describe quantum memory stored as a global property of interacting spins on a surface. The state space is fixed by a complete set of quasi-local stabilizer operators and the code dimension depends on the first homology group of the surface complex. These code states can be actively stabilized by measurements or, alternatively, can be prepared by cooling to the ground subspace of a quasi-local spin Hamiltonian. In the case of spin-1/2 (qubit) lattices, such ground states have been proposed as topologically protected memory for qubits. We extend these constructions to lattices or more generally cell complexes with qudits, either of prime level or of level dℓd^\ell for dd prime and ℓ≥0\ell \geq 0, and therefore under tensor decomposition, to arbitrary finite levels. The Hamiltonian describes an exact Zd≅Z/dZ\mathbb{Z}_d\cong\mathbb{Z}/d\mathbb{Z} gauge theory whose excitations correspond to abelian anyons. We provide protocols for qudit storage and retrieval and propose an interferometric verification of topological order by measuring quasi-particle statistics.Comment: 26 pages, 5 figure

    Diagnostic Accuracy of a MR Protocol Acquired with and without Endorectal Coil for Detection of Prostate Cancer: A Multicenter Study

    Full text link
    Introduction The purpose of this study was to compare diagnostic accuracy of a prostate multiparametric magnetic resonance imaging (mpMRI) protocol for detection of prostate cancer between images acquired with and without en-dorectal coil (ERC). Materials This study was approved by the regional ethics committee. Between 2014 and 2015, 33 patients (median age 51.3 years; range 42.1-77.3 years) who underwent prostate-MRI at 3T scanners at 2 different institutions, acquired with (mpMRI) and without (mpMRI) ERC and who received radical prostatectomy, were included in this retrospective study. Two expert readers (R1, R2) attributed a PI-RADS version 2 score for the most suspect (i. e. index) lesion for mpMRI and mpMRI. Sensitivity and positive predictive value for detection of index lesions were assessed using 2 × 2 contingency tables. Differences between groups were tested using the McNemar test. Whole-mount histopathology served as reference standard. Results On a quadrant-basis cumulative sensitivity ranged between 0.61-0.67 and 0.76-0.88 for mpMRI and mpMRI protocols, respectively (p > 0.05). Cumulative positive predictive value ranged between 0.80-0.81 and 0.89-0.91 for mpMRI and mpMRI protocols, respectively. The differences were not statistically significant for R1 (p = 0.267) or R2 (p = 0.508). Conclusion Our results suggest that there may be no significant differences for detection of prostate cancer between images acquired with and without an ERC

    Atomic Carbon in M82: Physical conditions derived from simultaneous observations of the [CI] fine structure submillimeter wave transitions

    Get PDF
    We report the first extragalactic detection of the neutral carbon [CI] 3P2-3P1 fine structure line at 809 GHz. The line was observed towards M82 simultaneously with the 3P1-3P0 line at 492 GHz, providing a precise measurement of the J=2-1/J=1-0 integrated line ratio of 0.96 (on a [K km s^-1] -scale). This ratio constrains the [CI] emitting gas to have a temperature of at least 50 K and a density of at least 10^4 cm^-3. Already at this minimum temperature and density, the beam averaged CI-column density is large, 2.1 10^18 cm^-2, confirming the high CI/CO abundance ratio of approximately 0.5 estimated earlier from the 492 GHz line alone. We argue that the [CI] emission from M82 most likely arises in clouds of linear size around a few pc with a density of about 10^4 cm^-3 or slightly higher and temperatures of 50 K up to about 100 K.Comment: 4 pages, 2 figures, ApJL in press, postscript also available at ftp://apollo.ph1.uni-koeln.de/pub/stutzki/m82_pap.ps.gz e-mail-contact:[email protected]

    The Anatomy of the bill Tip of Kiwi and Associated Somatosensory Regions of the Brain: Comparisons with Shorebirds

    Get PDF
    Three families of probe-foraging birds, Scolopacidae (sandpipers and snipes), Apterygidae (kiwi), and Threskiornithidae (ibises, including spoonbills) have independently evolved long, narrow bills containing clusters of vibration-sensitive mechanoreceptors (Herbst corpuscles) within pits in the bill-tip. These ‘bill-tip organs’ allow birds to detect buried or submerged prey via substrate-borne vibrations and/or interstitial pressure gradients. Shorebirds, kiwi and ibises are only distantly related, with the phylogenetic divide between kiwi and the other two taxa being particularly deep. We compared the bill-tip structure and associated somatosensory regions in the brains of kiwi and shorebirds to understand the degree of convergence of these systems between the two taxa. For comparison, we also included data from other taxa including waterfowl (Anatidae) and parrots (Psittaculidae and Cacatuidae), non-apterygid ratites, and other probe-foraging and non probe-foraging birds including non-scolopacid shorebirds (Charadriidae, Haematopodidae, Recurvirostridae and Sternidae). We show that the bill-tip organ structure was broadly similar between the Apterygidae and Scolopacidae, however some inter-specific variation was found in the number, shape and orientation of sensory pits between the two groups. Kiwi, scolopacid shorebirds, waterfowl and parrots all shared hypertrophy or near-hypertrophy of the principal sensory trigeminal nucleus. Hypertrophy of the nucleus basorostralis, however, occurred only in waterfowl, kiwi, three of the scolopacid species examined and a species of oystercatcher (Charadriiformes: Haematopodidae). Hypertrophy of the principal sensory trigeminal nucleus in kiwi, Scolopacidae, and other tactile specialists appears to have co-evolved alongside bill-tip specializations, whereas hypertrophy of nucleus basorostralis may be influenced to a greater extent by other sensory inputs. We suggest that similarities between kiwi and scolopacid bill-tip organs and associated somatosensory brain regions are likely a result of similar ecological selective pressures, with inter-specific variations reflecting finer-scale niche differentiation

    The GALEX Arecibo SDSS Survey. I. Gas Fraction Scaling Relations of Massive Galaxies and First Data Release

    Get PDF
    We introduce the GALEX Arecibo SDSS Survey (GASS), an on-going large program that is gathering high quality HI-line spectra using the Arecibo radio telescope for an unbiased sample of ~1000 galaxies with stellar masses greater than 10^10 Msun and redshifts 0.025<z<0.05, selected from the SDSS spectroscopic and GALEX imaging surveys. The galaxies are observed until detected or until a low gas mass fraction limit (1.5-5%) is reached. This paper presents the first Data Release, consisting of ~20% of the final GASS sample. We use this data set to explore the main scaling relations of HI gas fraction with galaxy structure and NUV-r colour. A large fraction (~60%) of the galaxies in our sample are detected in HI. We find that the atomic gas fraction decreases strongly with stellar mass, stellar surface mass density and NUV-r colour, but is only weakly correlated with galaxy bulge-to-disk ratio (as measured by the concentration index of the r-band light). We also find that the fraction of galaxies with significant (more than a few percent) HI decreases sharply above a characteristic stellar surface mass density of 10^8.5 Msun kpc^-2. The fraction of gas-rich galaxies decreases much more smoothly with stellar mass. One of the key goals of GASS is to identify and quantify the incidence of galaxies that are transitioning between the blue, star-forming cloud and the red sequence of passively-evolving galaxies. Likely transition candidates can be identified as outliers from the mean scaling relations between gas fraction and other galaxy properties. [abridged]Comment: 25 pages, 12 figures. Accepted for publication in MNRAS. Version with high resolution figures available at http://www.mpa-garching.mpg.de/GASS/pubs.ph

    Asymmetric Bethe-Salpeter equation for pairing and condensation

    Full text link
    The Martin-Schwinger hierarchy of correlations are reexamined and the three-particle correlations are investigated under various partial summations. Besides the known approximations of screened, ladder and maximally crossed diagrams the pair-pair correlations are considered. It is shown that the recently proposed asymmetric Bethe-Salpeter equation to avoid unphysical repeated collisions is derived as a result of the hierarchical dependencies of correlations. Exceeding the parquet approximation we show that an asymmetry appears in the selfconsistent propagators. This form is superior over the symmetric selfconsistent one since it provides the Nambu-Gorkov equations and gap equation for fermions and the Beliaev equations for bosons while from the symmetric form no gap equation results. The selfenergy diagrams which account for the subtraction of unphysical repeated collisions are derived from the pair-pair correlation in the three-particle Greenfunction. It is suggested to distinguish between two types of selfconsistency, the channel-dressed propagators and the completely dressed propagators, with the help of which the asymmetric expansion completes the Ward identity and is Φ\Phi-derivable.Comment: 12 pages. 26 figure

    Global observations of aerosol-cloud-precipitation-climate interactions: Global observations of aerosol-cloud-precipitation-climateinteractions

    Get PDF
    Cloud drop condensation nuclei (CCN) and ice nuclei (IN) particles determine to a large extent cloud microstructure and, consequently, cloud albedo and the dynamic response of clouds to aerosol-induced changes to precipitation. This can modify the reflected solar radiation and the thermal radiation emitted to space. Measurements of tropospheric CCN and IN over large areas have not been possible and can be only roughly approximated from satellite-sensor-based estimates of optical properties of aerosols. Our lack of ability to measure both CCN and cloud updrafts precludes disentangling the effects ofmeteorology fromthose of aerosols and represents the largest component in our uncertainty in anthropogenic climate forcing.Ways to improve the retrieval accuracy include multiangle and multipolarimetric passive measurements of the optical signal and multispectral lidar polarimetric measurements. Indirect methods include proxies of trace gases, as retrieved by hyperspectral sensors. Perhaps the most promising emerging direction is retrieving the CCN properties by simultaneously retrieving convective cloud drop number concentrations and updraft speeds, which amounts to using clouds as natural CCN chambers. These satellite observations have to be constrained by in situ observations of aerosol-cloud-precipitation-climate (ACPC) interactions, which in turn constrain a hierarchy of model simulations of ACPC. Since the essence of a general circulation model is an accurate quantification of the energy and mass fluxes in all forms between the surface, atmosphere and outer space, a route to progress is proposed here in the form of a series of box flux closure experiments in the various climate regimes. A roadmap is provided for quantifying the ACPC interactions and thereby reducing the uncertainty in anthropogenic climate forcing

    Unfavourable birth outcomes of the Roma women in the Czech Republic and the potential explanations: a population-based study

    Get PDF
    BACKGROUND: Data on the health status of the Roma people in Central and Eastern Europe are sparse and the reasons for their poor health are not clear. The objective of this study was to quantify the differences in birth outcomes between Roma and non-Roma mothers in the Czech Republic and to investigate the potential causes of such differences. METHOD: A population-based study recruited 8938 non-Roma and 1388 Roma hospitalised singleton births that occurred in two Czech districts (Teplice and Prachatice) between 1995 and 2004. During their stay in hospital, mothers completed a questionnaire on their demographic and socioeconomic characteristics and maternal smoking and alcohol consumption. Data on maternal height and weight and on infants' birth weight and gestational age were taken from hospital records. RESULTS: Birth weight and gestational age of Roma infants was 373 (SE 15) g and 0.92 (0.05) weeks, respectively, lower than in non-Roma infants. Controlling for demographic, socioeconomic and behavioural factors reduced these differences to 133 (18) g and 0.57 (0.06) weeks, respectively (all p-values < 0.001). In terms of binary outcomes, the Roma vs. non-Roma odds ratios were 4.5 (95% CI 3.7–5.4) for low birth weight (< 2500 g), 2.8 (2.2–3.4) for preterm birth (< 37 weeks of gestation), and 2.9 (2.5–3.4) for intrauterine grown retardation (<10(th )percentile of birth weight for gestational age); controlling for all covariates reduced these odds ratios to 1.7 (1.3–2.2), 1.5 (1.1–2.0) and 1.3 (1.0–1.6), respectively. Maternal education made the largest contribution to the ethnic differences; the role of health behaviours was relatively modest. CONCLUSION: There are striking differences in birth outcomes between Roma and non-Roma mothers. The causes of these differences are complex but largely socioeconomic
    • …
    corecore