1,100 research outputs found

    Optimal search strategies for identifying sound clinical prediction studies in EMBASE

    Get PDF
    BACKGROUND: Clinical prediction guides assist clinicians by pointing to specific elements of the patient's clinical presentation that should be considered when forming a diagnosis, prognosis or judgment regarding treatment outcome. The numbers of validated clinical prediction guides are growing in the medical literature, but their retrieval from large biomedical databases remains problematic and this presents a barrier to their uptake in medical practice. We undertook the systematic development of search strategies ("hedges") for retrieval of empirically tested clinical prediction guides from EMBASE. METHODS: An analytic survey was conducted, testing the retrieval performance of search strategies run in EMBASE against the gold standard of hand searching, using a sample of all 27,769 articles identified in 55 journals for the 2000 publishing year. All articles were categorized as original studies, review articles, general papers, or case reports. The original and review articles were then tagged as 'pass' or 'fail' for methodologic rigor in the areas of clinical prediction guides and other clinical topics. Search terms that depicted clinical prediction guides were selected from a pool of index terms and text words gathered in house and through request to clinicians, librarians and professional searchers. A total of 36,232 search strategies composed of single and multiple term phrases were trialed for retrieval of clinical prediction studies. The sensitivity, specificity, precision, and accuracy of search strategies were calculated to identify which were the best. RESULTS: 163 clinical prediction studies were identified, of which 69 (42.3%) passed criteria for scientific merit. A 3-term strategy optimized sensitivity at 91.3% and specificity at 90.2%. Higher sensitivity (97.1%) was reached with a different 3-term strategy, but with a 16% drop in specificity. The best measure of specificity (98.8%) was found in a 2-term strategy, but with a considerable fall in sensitivity to 60.9%. All single term strategies performed less well than 2- and 3-term strategies. CONCLUSION: The retrieval of sound clinical prediction studies from EMBASE is supported by several search strategies

    Large Chiral Diffeomorphisms on Riemann Surfaces and W-algebras

    Full text link
    The diffeomorphism action lifted on truncated (chiral) Taylor expansion of a complex scalar field over a Riemann surface is presented in the paper under the name of large diffeomorphisms. After an heuristic approach, we show how a linear truncation in the Taylor expansion can generate an algebra of symmetry characterized by some structure functions. Such a linear truncation is explicitly realized by introducing the notion of Forsyth frame over the Riemann surface with the help of a conformally covariant algebraic differential equation. The large chiral diffeomorphism action is then implemented through a B.R.S. formulation (for a given order of truncation) leading to a more algebraic set up. In this context the ghost fields behave as holomorphically covariant jets. Subsequently, the link with the so called W-algebras is made explicit once the ghost parameters are turned from jets into tensorial ghost ones. We give a general solution with the help of the structure functions pertaining to all the possible truncations lower or equal to the given order. This provides another contribution to the relationship between KdV flows and W-diffeomorphimsComment: LaTeX file, 31 pages, no figure. Version to appear in J. Math. Phys. Work partly supported by Region PACA and INF

    Bring Your Online Students Closer: Instructional Design Tips to Create Engaging Videos

    Get PDF
    How can online students feel inclusive and engaged in their learning environment? This presentation will focus on the techniques and tips of creating engaging educational videos with your laptop, cell phone or other type of video device. This session will address ways to create more interactive and interesting online experiences for students through the use of instructional videos. It will also discuss best practices for creating engaging online learning and establishing a supportive online course community

    DRAFT IMECE2006-13074 SSEM-AG COMPUTER MODEL FOR OPTIMIZATION OF POLYMER EXTRUSION

    Get PDF
    ABSTRACT The optimization of an extrusion process is a conflicting, multi-objective problem. It is complicated by the number of variables (screw/die geometry, operating conditions, material data) and their non-linear relations, as well as by the opposing criteria, for example extrusion throughput and power consumption. It is difficult to find the global optimum for the process avoiding local optima. There are two approaches to solve the problem, experimental and using a mathematical model of extrusion. Optimization techniques based on an experimentation are time-consuming and very expensive. In this paper we present an optimization methodology based on the Genetic Algorithms (AG), where response surface is given by the extrusion model. A mathematical Single-Screw Extrusion Model SSEM developed at the Warsaw University of Technology is used to predict the extruder behavior, and AG approach is used for optimization. An integrated SSEM-AG system was developed to study optimization of the single-screw extrusion process. Three design criteria (output variables) are selected for optimization: maximum extrusion throughput, minimum power consumption and low melt temperature. As input variables, screw speed, barrel temperature and screw channel depth are chosen

    Biopython: freely available Python tools for computational molecular biology and bioinformatics

    Get PDF
    Summary: The Biopython project is a mature open source international collaboration of volunteer developers, providing Python libraries for a wide range of bioinformatics problems. Biopython includes modules for reading and writing different sequence file formats and multiple sequence alignments, dealing with 3D macro molecular structures, interacting with common tools such as BLAST, ClustalW and EMBOSS, accessing key online databases, as well as providing numerical methods for statistical learning. Availability: Biopython is freely available, with documentation and source code at www.biopython.org under the Biopython license. Contact: All queries should be directed to the Biopython mailing lists, see www.biopython.org/wiki/[email protected]

    Discrete Laplace Cycles of Period Four

    Full text link
    We study discrete conjugate nets whose Laplace sequence is of period four. Corresponding points of opposite nets in this cyclic sequence have equal osculating planes in different net directions, that is, they correspond in an asymptotic transformation. We show that this implies that the connecting lines of corresponding points form a discrete W-congruence. We derive some properties of discrete Laplace cycles of period four and describe two explicit methods for their construction

    Guidelines for choosing between multi-item and single-item scales for construct measurement: A predictive validity perspective

    Get PDF
    Establishing predictive validity of measures is a major concern in marketing research. This paper investigates the conditions favoring the use of single items versus multi-item scales in ter

    Further search for a neutral boson with a mass around 9 MeV/c2

    Get PDF
    Two dedicated experiments on internal pair conversion (IPC) of isoscalar M1 transitions were carried out in order to test a 9 MeV/c2 X-boson scenario. In the 7Li(p,e+e-)8Be reaction at 1.1 MeV proton energy to the predominantly T=0 level at 18.15 MeV, a significant deviation from IPC was observed at large pair correlation angles. In the 11B(d,n e+e-)12C reaction at 1.6 MeV, leading to the 12.71 MeV 1+ level with pure T=0 character, an anomaly was observed at 9 MeV/c2. The compatibility of the results with the scenario is discussed.Comment: 12 pages, 5 figures, 2 table

    Invariants of pseudogroup actions: Homological methods and Finiteness theorem

    Get PDF
    We study the equivalence problem of submanifolds with respect to a transitive pseudogroup action. The corresponding differential invariants are determined via formal theory and lead to the notions of k-variants and k-covariants, even in the case of non-integrable pseudogroup. Their calculation is based on the cohomological machinery: We introduce a complex for covariants, define their cohomology and prove the finiteness theorem. This implies the well-known Lie-Tresse theorem about differential invariants. We also generalize this theorem to the case of pseudogroup action on differential equations.Comment: v2: some remarks and references addee

    Hamiltonian evolutions of twisted gons in \RP^n

    Full text link
    In this paper we describe a well-chosen discrete moving frame and their associated invariants along projective polygons in \RP^n, and we use them to write explicit general expressions for invariant evolutions of projective NN-gons. We then use a reduction process inspired by a discrete Drinfeld-Sokolov reduction to obtain a natural Hamiltonian structure on the space of projective invariants, and we establish a close relationship between the projective NN-gon evolutions and the Hamiltonian evolutions on the invariants of the flow. We prove that {any} Hamiltonian evolution is induced on invariants by an evolution of NN-gons - what we call a projective realization - and we give the direct connection. Finally, in the planar case we provide completely integrable evolutions (the Boussinesq lattice related to the lattice W3W_3-algebra), their projective realizations and their Hamiltonian pencil. We generalize both structures to nn-dimensions and we prove that they are Poisson. We define explicitly the nn-dimensional generalization of the planar evolution (the discretization of the WnW_n-algebra) and prove that it is completely integrable, providing also its projective realization
    • 

    corecore