90 research outputs found

    On the Nature of the X-ray Emission from the Ultraluminous X-ray Source, M33 X-8: New Constraints from NuSTAR and XMM-Newton

    Full text link
    We present nearly simultaneous NuSTAR and XMM-Newton observations of the nearby (832 kpc) ultraluminous X-ray source (ULX) M33 X-8. M33 X-8 has a 0.3-10 keV luminosity of LX ~ 1.4 x 10^39 erg/s, near the boundary of the "ultraluminous" classification, making it an important source for understanding the link between typical Galactic X-ray binaries and ULXs. Past studies have shown that the 0.3-10 keV spectrum of X-8 can be characterized using an advection-dominated accretion disk model. We find that when fitting to our NuSTAR and XMM-Newton observations, an additional high-energy (>10 keV) Comptonization component is required, which allows us to rule out single advection-dominated disk and classical sub-Eddington models. With our new constraints, we analyze XMM-Newton data taken over the last 17 years to show that small (~30%) variations in the 0.3-10 keV flux of M33 X-8 result in spectral changes similar to those observed for other ULXs. The two most likely phenomenological scenarios suggested by the data are degenerate in terms of constraining the nature of the accreting compact object (i.e., black hole versus neutron star). We further present a search for pulsations using our suite of data; however, no clear pulsations are detected. Future observations designed to observe M33 X-8 at different flux levels across the full 0.3-30 keV range would significantly improve our constraints on the nature of this important source.Comment: Accepted for publication in ApJ (15 pages, 4 tables, 6 figures

    The Impact of Galaxy Cluster Mergers on Cosmological Parameter Estimation from Surveys of the Sunyaev-Zel'dovich Effect

    Full text link
    Sensitive surveys of the Cosmic Microwave Background will detect thousands of galaxy clusters via the Sunyaev-Zel'dovich (SZ) effect. Two SZ observables, the central or maximum and integrated Comptonization parameters y_max and Y, relate in a simple way to the total cluster mass, which allow the construction of mass functions (MFs) that can be used to estimate cosmological parameters such as Omega_M, sigma_8, and the dark energy parameter w. However, clusters form from the mergers of smaller structures, events that can disrupt the equilibrium of intracluster gas upon which SZ-M relations rely. From a set of N-body/hydrodynamical simulations of binary cluster mergers, we calculate the evolution of Y and y_max over the course of merger events and find that both parameters are transiently "boosted," primarily during the first core passage. We then use a semi-analytic technique developed by Randall et al. (2002) to estimate the effect of merger boosts on the distribution functions YF and yF of Y and y_max, respectively, via cluster merger histories determined from extended Press-Schechter (PS) merger trees. We find that boosts do not induce an overall systematic effect on YFs, and the values of Omega_M, sigma_8, and w were returned to within 2% of values expected from the nonboosted YFs. The boosted yFs are significantly biased, however, causing Omega_M to be underestimated by 15-45%, sigma_8 to be overestimated by 10-25%, and w to be pushed to more negative values by 25-45%. We confirm that the integrated SZ effect, Y, is far more robust to mergers than y_max, as previously reported by Motl et al. (2005) and similarly found for the X-ray equivalent Y_X, and we conclude that Y is the superior choice for constraining cosmological parameters.Comment: 16 pages, 6 figures, Accepted for publication in the Astrophysical Journa

    The Chandra Multi-Wavelength Project: Optical Spectroscopy and the Broadband Spectral Energy Distributions of X-ray Selected AGN

    Get PDF
    From optical spectroscopy of X-ray sources observed as part of ChaMP, we present redshifts and classifications for a total of 1569 Chandra sources from our targeted spectroscopic follow up using the FLWO, SAAO, WIYN, CTIO, KPNO, Magellan, MMT and Gemini telescopes, and from archival SDSS spectroscopy. We classify the optical counterparts as 50% BLAGN, 16% NELG, 14% ALG, and 20% stars. We detect QSOs out to z~5.5 and galaxies out to z~3. We have compiled extensive photometry from X-ray to radio bands. Together with our spectroscopic information, this enables us to derive detailed SEDs for our extragalactic sources. We fit a variety of templates to determine bolometric luminosities, and to constrain AGN and starburst components where both are present. While ~58% of X-ray Seyferts require a starburst event to fit observed photometry only 26% of the X-ray QSO population appear to have some kind of star formation contribution. This is significantly lower than for the Seyferts, especially if we take into account torus contamination at z>1 where the majority of our X-ray QSOs lie. In addition, we observe a rapid drop of the percentage of starburst contribution as X-ray luminosity increases. This is consistent with the quenching of star formation by powerful QSOs, as predicted by the merger model, or with a time lag between the peak of star formation and QSO activity. We have tested the hypothesis that there should be a strong connection between X-ray obscuration and star-formation but we do not find any association between X-ray column density and star formation rate both in the general population or the star-forming X-ray Seyferts. Our large compilation also allows us to report here the identification of 81 XBONG, 78 z>3 X-ray sources and 8 Type-2 QSO candidates. Also we have identified the highest redshift (z=5.4135) X-ray selected QSO with optical spectroscopy.Comment: 17 pages, 16 figures, accepted for publication in ApJS. Full data table and README file can be found online at http://hea-www.harvard.edu/~pgreen/Papers.htm

    Pneumonia in Bighorn Sheep: Testing the Super-Spreader Hypothesis

    Get PDF
    Following introduction of pneumonia, disease can persist in bighorn sheep (Ovis canadensis) populations for decades as annual or sporadic pneumonia epidemics in lambs.  Recurring years of depressed recruitment due to high rates of pneumonia-induced mortality in juveniles is a major obstacle to population recovery.  Management strategies for resolving this problem have so far been elusive. We are investigating the feasibility of removing individual “super-spreaders” to improve lamb survival.  Individual variation in infection and transmission is well documented in human diseases (e.g. “Typhoid Mary”).  We are testing the hypothesis that pneumonia epidemics in lambs are initiated by transmission of pathogens from a few “chronic-shedder” ewes. We have completed the first year of a 5-year project in the Hells Canyon region of Idaho, Oregon, and Washington, and in a captive population at South Dakota State University. Through repeated testing of free-ranging individuals in Hells Canyon, we have identified individual differences in shedding of Mycoplasma ovipneumoniae, a primary pathogen in the bighorn sheep respiratory disease complex.  We also found that when penned separately in captivity, lambs of ewes that consistently tested positive (chronic shedders) were infected and died of pneumonia, whereas lambs born to ewes from an infected population that tested negative (non-shedders), were not infected and survived.  Over the next 4 years we plan to 1) continue and expand testing of free-ranging and captive animals, 2) determine whether removal of chronic-shedder ewes improves lamb survival in free-ranging populations, 3) expand and replicate chronic-shedder commingling experiments in captivity, and 4) establish and monitor a new population founded with non-shedders from an infected population

    The Impact of Cluster Structure and Dynamical State on Scatter in the Sunyaev-Zel'dovich Flux-Mass Relation

    Full text link
    Cosmological constraints from cluster surveys rely on accurate mass estimates from the mass-observable relations. In order to avoid systematic biases and reduce uncertainties, we study the form and physical origin of the intrinsic scatter about the mean Sunyaev-Zel'dovich (SZ) flux-mass relation using a hydrodynamical simulation of galaxy cluster formation. We examine the assumption of lognormal scatter and detect non-negligible positive skewness and kurtosis (> 0.5) for a wide range of limiting masses and redshifts. These higher-order moments should be included in the parametrization of scatter in order not to bias cosmological constraints. We investigate the sources of the scatter by correlating it with measures of cluster morphology, halo concentration, and dynamical state, and we quantify the individual contribution from each source. We find that statistically the impact of dynamical state is weak, so the selection bias due to mergers is negligible. On the other hand, there is a strong correlation between the scatter and halo concentration, which can be used to reduce the scatter significantly (from 12.07% to 7.34% or by ~40% for clusters at z = 0). We also show that a cross-calibration by combining information from X-ray followups can be used to reduce the scatter in the flux-mass relation and also identify outliers in both X-ray and SZ cluster surveys.Comment: 14 pages, 12 figures; accepted for publication in Ap

    NuSTAR Observations of Abell 665 and 2146: Constraints on Non-Thermal Emission

    Full text link
    Observations from past missions such as RXTE and Beppo-SAX suggested the presence of inverse Compton (IC) scattering at hard X-ray energies within the intracluster medium of some massive galaxy clusters. In subsequent years, observations by, e.g., Suzaku, and now NuSTAR, have not been able to confirm these detections. We report on NuSTAR hard X-ray searches for IC emission in two massive galaxy clusters, Abell 665 and Abell 2146. To constrain the global IC flux in these two clusters, we fit global NuSTAR spectra with three models: single (1T) and two-temperature (2T) models, and a 1T plus power law component (T++IC). The temperature components are meant to characterize the thermal ICM emission, while the power law represents the IC emission. We find that the 3-30 keV Abell 665 and 3-20 keV Abell 2146 spectra are best described by thermal emission alone, with average global temperatures of kT=(9.15±0.1)kT = (9.15\pm 0.1) keV for Abell 665 and kT=(8.29±0.1)kT = (8.29\pm 0.1) keV for Abell 2146. We constrain the IC flux to FNT<0.60×10−12F_{\rm NT} < 0.60 \times 10^{-12} erg s−1^{-1} cm−2^{-2} and FNT<0.85×10−12F_{\rm NT} < 0.85 \times 10^{-12} erg s−1^{-1} cm−2^{-2} (20-80 keV) for Abell 665 and Abell 2146, respectively both at the 90% confidence level. When we couple the IC flux limits with 1.4 GHz diffuse radio data from the VLA, we set lower limits on the average magnetic field strengths of >>0.14 ÎŒ\muG and >>0.011 ÎŒ\muG for Abell 665 and Abell 2146, respectively.Comment: 19 pages, 15 figure

    Simulations of the Microwave Sky

    Full text link
    We create realistic, full-sky, half-arcminute resolution simulations of the microwave sky matched to the most recent astrophysical observations. The primary purpose of these simulations is to test the data reduction pipeline for the Atacama Cosmology Telescope (ACT) experiment; however, we have widened the frequency coverage beyond the ACT bands to make these simulations applicable to other microwave background experiments. Some of the novel features of these simulations are that the radio and infrared galaxy populations are correlated with the galaxy cluster populations, the CMB is lensed by the dark matter structure in the simulation via a ray-tracing code, the contribution to the thermal and kinetic Sunyaev-Zel'dovich (SZ) signals from galaxy clusters, groups, and the IGM has been included, and the gas prescription to model the SZ signals matches the most recent X-ray observations. Regarding the contamination of cluster SZ flux by radio galaxies, we find for 148 GHz (90 GHz) only 3% (4%) of halos have their SZ decrements contaminated at a level of 20% or more. We find the contamination levels higher for infrared galaxies. However, at 90 GHz, less than 20% of clusters with M_{200} > 2.5 x 10^{14} Msun and z<1.2 have their SZ decrements filled in at a level of 20% or more. At 148 GHz, less than 20% of clusters with M_{200} > 2.5 x 10^{14} Msun and z<0.8 have their SZ decrements filled in at a level of 50% or larger. Our models also suggest that a population of very high flux infrared galaxies, which are likely lensed sources, contribute most to the SZ contamination of very massive clusters at 90 and 148 GHz. These simulations are publicly available and should serve as a useful tool for microwave surveys to cross-check SZ cluster detection, power spectrum, and cross-correlation analyses.Comment: Sims are now public at http://lambda.gsfc.nasa.gov/toolbox/tb_cmbsim_ov.cfm; Expanded discussion of N-body sim and IGM; Version accepted by Ap

    Theoretical Uncertainties due to AGN Subgrid Models in Predictions of Galaxy Cluster Observable Properties

    Full text link
    Cosmological constraints derived from galaxy clusters rely on accurate predictions of cluster observable properties, in which feedback from active galactic nuclei (AGN) is a critical component. In order to model the physical effects due to supermassive black holes (SMBH) on cosmological scales, subgrid modeling is required, and a variety of implementations have been developed in the literature. However, theoretical uncertainties due to model and parameter variations are not yet well understood, limiting the predictive power of simulations including AGN feedback. By performing a detailed parameter sensitivity study in a single cluster using several commonly-adopted AGN accretion and feedback models with FLASH, we quantify the model uncertainties in predictions of cluster integrated properties. We find that quantities that are more sensitive to gas density have larger uncertainties (~20% for Mgas and a factor of ~2 for Lx at R500), whereas Tx, Ysz, and Yx are more robust (~10-20% at R500). To make predictions beyond this level of accuracy would require more constraints on the most relevant parameters: the accretion model, mechanical heating efficiency, and size of feedback region. By studying the impact of AGN feedback on the scaling relations, we find that an anti-correlation exists between Mgas and Tx, which is another reason why Ysz and Yx are excellent mass proxies. This anti-correlation also implies that AGN feedback is likely to be an important source of intrinsic scatter in the Mgas-Tx and Lx-Tx relations.Comment: Accepted for publication in MNRA
    • 

    corecore