696 research outputs found

    Modification of light utilization for skeletal growth by water flow in the scleractinian coral Galaxea fascicularis

    Get PDF
    In this study, we tested the hypothesis that the importance of water flow for skeletal growth (rate) becomes higher with increasing irradiance levels (i.e. a synergistic effect) and that such effect is mediated by a water flow modulated effect on net photosynthesis. Four series of nine nubbins of G. fascicularis were grown at either high (600 µE m-2 s-1) or intermediate (300 µE m-2 s-1) irradiance in combination with either high (15–25 cm s-1) or low (5–10 cm s-1) flow. Growth was measured as buoyant weight and surface area. Photosynthetic rates were measured at each coral’s specific experimental irradiance and flow speed. Additionally, the instantaneous effect of water flow on net photosynthetic rate was determined in short-term incubations in a respirometric flowcell. A significant interaction was found between irradiance and water flow for the increase in buoyant weight, the increase in surface area, and specific skeletal growth rate, indicating that flow velocity becomes more important for coral growth with increasing irradiance levels. Enhancement of coral growth with increasing water flow can be explained by increased net photosynthetic rates. Additionally, the need for costly photo-protective mechanisms at low flow regimes could explain the differences in growth with flow

    Light intensity, photoperiod duration, daily light flux and coral growth of Galaxea fascicularis in an aquarium setting: a matter of photons?

    Get PDF
    Light is one of the most important abiotic factors influencing the (skeletal) growth of scleractinian corals. Light stimulates coral growth by the process of light-enhanced calcification, which is mediated by zooxanthellar photosynthesis. However, the quantity of light that is available for daily coral growth is not only determined by light intensity (i.e. irradiance), but also by photoperiod (i.e. the light duration time). Understanding and optimizing conditions for coral growth is essential for sustainable coral aquaculture. Therefore, in this study, the question was explored whether more light (i.e. more photons), presented either as irradiance or as light duration, would result in more growth. A series of nine genetically identical coral colonies of Galaxea fascicularis L. were cultured for a period of 18 weeks at different light duration times (8 hours 150 µE m-2 s-1:16 hours dark, 12 hours 150 µE m-2 s-1:12 hours dark, 16 hours 150 µE m-2 s-1:8 hours dark, 24 hours 150 µE m-2 s-1:0 hours dark) and different irradiance levels (8 hours 150 µE m-2 s-1:16 hours dark, 8 hours 225 µE m-2 s-1:16 hours dark and 8 hours 300 µE m-2 s-1:16 hours dark). Growth was determined every two weeks by measuring buoyant weight. Temperature, salinity and feeding levels were kept constant during the experiment. To detect possible acclimation of the corals to an increased light duration, rates of net photosynthesis and dark respiration were measured, hereby comparing coral colonies grown under an 8:16 hours light (150 µE m-2 s-1):dark cycle with corals grown under a 16:8 hours light (150 µE m-2 s-1):dark cycle. No increase in growth was detected with either increasing photoperiod or irradiance. Continuous lighting (24 hours 150 µE m-2 s-1:0 hours dark) resulted in immediate bleaching and the corals died after 14 weeks. Hourly photosynthetic rates were significantly reduced in the 16 hour light treatment compared to the 8 hour light treatment. As a result, daily net photosynthetic rates were not significantly different, which may explain the observed specific growth rates. Acclimation to photoperiod duration appeared neither to be mediated by changes in chlorophyll-a concentration nor zooxanthellae density. Based on the results of this study, we can conclude that the enhancing effect of light on coral growth is not only a matter of photons. Obviously, the availability of light was not limiting growth in these experiments and was probably in excess (i.e. stressful amounts). Other factors are discussed that play a role in determining growth rates and might explain our results

    Toward optimal control of flat plate photobioreactors: the greenhouse analogy?

    Get PDF
    Abstract: The cultivation of algae in photo-bioreactors shows similarities to crop cultivation in greenhouses, especially when the reactors are driven by sun light. Advanced methodologies for dynamic optimization and optimal control for greenhouses are known from earlier research. The aim here is to extend these methodologies to microalgae cultivated in a flat plate photo-bioreactor. A one-state space model for the algal biomass in the reactor is presented. The growth rate vs. light curve is parameterized on the basis of experimental evidence. Spatial distribution of light and growth rate between the plates is also considered. The control variable is the dilution rate. Dynamic optimal control trajectories are presented for various choices of goal function and external solar irradiation trajectories over a horizon of 3 days. It was found that the algae present in the reactor at final time represent a value for the future. Numerical and theoretical results suggest that the control is bang-(singular-)bang, with a strong dependence on the weather. The optimal biomass also depends on the available light, and achieving it to reach a new optimal steady cycle after a prolonged change in weather may take several days. A preliminary theoretical analysis suggests a control law that maximizes the effective growth rate. The analysis shows that like in the greenhouse case, the co-state of the algal biomass plays a pivot role in developing on-line controllers

    Review of US GO-SHIP (Global Oceans Shipboard Hydrographic Investigations Program) An OCB and US CLIVAR Report

    Get PDF
    The following document constitutes a review of the US GO-SHIP program, performed under the auspices of US Climate Variability and Predictability (CLIVAR) and Ocean Carbon Biogeochemistry (OCB) Programs. It is the product of an external review committee, charged and assembled by US CLIVAR and OCB with members who represent the interests of the programs and who are independent of US GO-SHIP support, which spent several months gathering input and drafting this report. The purpose of the review is to assess program planning, progress, and opportunities in collecting, providing, and synthesizing high quality hydrographic data to advance the scientific research goals of US CLIVAR and OCB

    Selective extraction of intracellular components from the microalga Chlorella vulgaris by combined pulsed electric field–temperature treatment

    Get PDF
    The synergistic effect of temperature (25–65 C) and total specific energy input (0.55–1.11 kWh kgDW 1 ) by pulsed electric field (PEF) on the release of intracellular components from the microalgae Chlorella vulgaris was studied. The combination of PEF with temperatures from 25 to 55 C resulted in a conductivity increase of 75% as a result of cell membrane permeabilization. In this range of temperatures, 25–39% carbohydrates and 3–5% proteins release occurred and only for carbohydrate release a synergistic effect was observed at 55 C. Above 55 C spontaneous cell lysis occurred without PEF. Combined PEF–temperature treatment does not sufficiently disintegrate the algal cells to release both carbohydrates and proteins at yields comparable to the benchmark bead milling (40–45% protein, 48–58% carbohydrates)

    Vertical transmission and successive location of symbiotic bacteria during embryo development and larva formation in Corticium candelabrum (Porifera: Demospongiae)

    Get PDF
    7 páginas, 8 figuras.This study reports on the transfer of heterotrophic bacteria from parental tissue to oocytes in the Mediterranean bacteriosponge Corticium candelabrum (Homosclerophorida) and the description of the successive locations of the microsymbionts during embryo development through transmission and scanning electron microscopy. Eight different types of symbiotic bacteria are described morphologically. These eight bacteria morphotypes are found in both adult individuals and larvae. Symbiotic bacteria are transferred to oocytes, but not to spermatocytes. Bacteria are first located at the oocyte periphery below a thick collagen layer and then they migrate to the oocyte cytoplasm, forming spherical clusters. After cleavage, the bacteria can be found in the free space between blastomeres but mainly accumulate at the embryo periphery below the follicular cells that surround the embryo. Once the blastocoel is formed, the symbiotic bacteria move to this central cavity where they actively divide by bipartition, increasing their number considerably. Many examples of phagocytosed bacteria in the proximal zone of the larval cells are observed at this stage. Consequently, bacteria may represent a complementary source of energy for free larvae and settlers before they are able to capture food from the surrounding water.This study was partially funded by the project INTERGEN CTM2004-05265-C02-02/MAR from the CICYT (Spain)Peer reviewe

    The value of computed tomography in detecting distal radioulnar joint instability after a distal radius fracture

    Get PDF
    This study evaluated the value of computed tomography scans for the diagnosis of distal radioulnar joint instability. A total of 46 patients, conservatively treated for a unilateral distal radius fracture, were evaluated. Clinical instability was tested using the stress test and clunk test. A computed tomography scan of both wrists was performed in pronation and supination. Two independent observers reviewed the computed tomography scans using: the radioulnar line, subluxation ratio, epicentre and radioulnar ratio methods. Radiological distal radioulnar joint instability was assessed by comparing the measurements of the injured wrist with those of the contralateral uninjured wrists. A

    Marine sponges as pharmacy

    Get PDF
    Marine sponges have been considered as a gold mine during the past 50 years, with respect to the diversity of their secondary metabolites. The biological effects of new metabolites from sponges have been reported in hundreds of scientific papers, and they are reviewed here. Sponges have the potential to provide future drugs against important diseases, such as cancer, a range of viral diseases, malaria, and inflammations. Although the molecular mode of action of most metabolites is still unclear, for a substantial number of compounds the mechanisms by which they interfere with the pathogenesis of a wide range of diseases have been reported. This knowledge is one of the key factors necessary to transform bioactive compounds into medicines. Sponges produce a plethora of chemical compounds with widely varying carbon skeletons, which have been found to interfere with pathogenesis at many different points. The fact that a particular disease can be fought at different points increases the chance of developing selective drugs for specific target

    Potential of novel desert microalgae and cyanobacteria for commercial applications and CO2 sequestration

    Get PDF
    CO2 fixation by phototrophic microalgae and cyanobacteria is seen as a possible global carbon emissions reducer; however, novel microalgae and cyanobacterial strains with tolerance to elevated temperatures and CO2 concentrations are essential for further development of algae-based carbon capture. Four novel strains isolated from the Arabian Gulf were investigated for their thermotolerance and CO2-tolerance, as well as their carbon capture capability. Two strains, Leptolyngbya sp. and Picochlorum sp., grew well at 40 °C, with productivities of 106.6 ± 10.0 and 87.5 ± 2.1 mg biomass L−1 d−1, respectively. Tetraselmis sp. isolate showed the highest biomass productivity and carbon capture rate of 157.7 ± 10.3 mg biomass L−1 d−1 and 270.8 ± 23.9 mg CO2 L−1 d−1, respectively, both at 30 °C. Under 20% CO2, the biomass productivity increased over 2-fold for both Tetraselmis and Picochlorum isolates, to 333.8 ± 41.1 and 244.7 ± 29.5 mg biomass L−1 d−1. These two isolates also presented significant amounts of lipids, up to 25.6 ± 0.9% and 28.0 ± 2.0% (w/w), as well as presence of EPA and DHA. Picochlorum sp. was found to have a suitable FAME profile for biodiesel production. Both Tetraselmis and Picochlorum isolates showed promising characteristics, making them valuable strains for further investigation towards commercial applications and CO2 capture.The authors would like to thank Mahroof Eroth, Dr. Ahmed Easa, and Dr. Abdulrahman Al Muftah from Qatar University, Andy Selwood from Cawthron Institute, and the QDVC team for their support. This work was supported by QDVC and Qatar University [Project QUEX-CAS-QDVC-14/15-7]
    • …
    corecore