24 research outputs found

    Hypothesis-driven genome-wide association studies provide novel insights into genetics of reading disabilities

    Full text link
    Reading Disability (RD) is often characterized by difficulties in the phonology of the language. While the molecular mechanisms underlying it are largely undetermined, loci are being revealed by genome-wide association studies (GWAS). In a previous GWAS for word reading (Price, 2020), we observed that top single-nucleotide polymorphisms (SNPs) were located near to or in genes involved in neuronal migration/axon guidance (NM/AG) or loci implicated in autism spectrum disorder (ASD). A prominent theory of RD etiology posits that it involves disturbed neuronal migration, while potential links between RD-ASD have not been extensively investigated. To improve power to identify associated loci, we up-weighted variants involved in NM/AG or ASD, separately, and performed a new Hypothesis-Driven (HD)-GWAS. The approach was applied to a Toronto RD sample and a meta-analysis of the GenLang Consortium. For the Toronto sample (n = 624), no SNPs reached significance; however, by gene-set analysis, the joint contribution of ASD-related genes passed the threshold (p~1.45 × 102^{-2}, threshold = 2.5 × 102^{-2}). For the GenLang Cohort (n = 26,558), SNPs in DOCK7 and CDH4 showed significant association for the NM/AG hypothesis (sFDR q = 1.02 × 102^{-2}). To make the GenLang dataset more similar to Toronto, we repeated the analysis restricting to samples selected for reading/language deficits (n = 4152). In this GenLang selected subset, we found significant association for a locus intergenic between BTG3-C21orf91 for both hypotheses (sFDR q < 9.00 × 104^{-4}). This study contributes candidate loci to the genetics of word reading. Data also suggest that, although different variants may be involved, alleles implicated in ASD risk may be found in the same genes as those implicated in word reading. This finding is limited to the Toronto sample suggesting that ascertainment influences genetic associations

    Hypothesis-driven genome-wide association studies provide novel insights into genetics of reading disabilities

    Get PDF
    Funding: Support for the Toronto project was provided by grants from the Canadian Institutes of Health Research (MOP-133440 and PJT-180419). K.P. was supported by the Hospital for Sick Children Research Training Program. E.E. and S.E.F. are supported by the Max Planck Society.Reading Disability (RD) is often characterized by difficulties in the phonology of the language. While the molecular mechanisms underlying it are largely undetermined, loci are being revealed by genome-wide association studies (GWAS). In a previous GWAS for word reading (Price, 2020), we observed that top single-nucleotide polymorphisms (SNPs) were located near to or in genes involved in neuronal migration/axon guidance (NM/AG) or loci implicated in autism spectrum disorder (ASD). A prominent theory of RD etiology posits that it involves disturbed neuronal migration, while potential links between RD-ASD have not been extensively investigated. To improve power to identify associated loci, we up-weighted variants involved in NM/AG or ASD, separately, and performed a new Hypothesis-Driven (HD)–GWAS. The approach was applied to a Toronto RD sample and a meta-analysis of the GenLang Consortium. For the Toronto sample (n = 624), no SNPs reached significance; however, by gene-set analysis, the joint contribution of ASD-related genes passed the threshold (p~1.45 × 10–2, threshold = 2.5 × 10–2). For the GenLang Cohort (n = 26,558), SNPs in DOCK7 and CDH4 showed significant association for the NM/AG hypothesis (sFDR q = 1.02 × 10–2). To make the GenLang dataset more similar to Toronto, we repeated the analysis restricting to samples selected for reading/language deficits (n = 4152). In this GenLang selected subset, we found significant association for a locus intergenic between BTG3-C21orf91 for both hypotheses (sFDR q < 9.00 × 10–4). This study contributes candidate loci to the genetics of word reading. Data also suggest that, although different variants may be involved, alleles implicated in ASD risk may be found in the same genes as those implicated in word reading. This finding is limited to the Toronto sample suggesting that ascertainment influences genetic associations.Publisher PDFPeer reviewe

    Language and reading impairments are associated with increased prevalence of non-right handedness

    Get PDF
    Funding: Royal Society - UF150663, RGF\EA\180141; Wellcome Trust - 217065/Z/19/Z; H2020 European Research Council - 694189; NWO - 451-15-017; National Health and Medical Research Council - 1173896; Canadian Institute for Health Research - MOP-133440.Handedness has been studied for association with language-related disorders because of its link with language hemispheric dominance. No clear pattern has emerged, possibly because of small samples, publication bias, and heterogeneous criteria across studies. Non-right-handedness (NRH) frequency was assessed in N = 2503 cases with reading and/or language impairment and N = 4316 sex-matched controls identified from 10 distinct cohorts (age range 6–19 years old; European ethnicity) using a priori set criteria. A meta-analysis (Ncases = 1994) showed elevated NRH % in individuals with language/reading impairment compared with controls (OR = 1.21, CI = 1.06–1.39, p = .01). The association between reading/language impairments and NRH could result from shared pathways underlying brain lateralization, handedness, and cognitive functions.Publisher PDFPeer reviewe

    Hypothesis-driven genome-wide association studies provide novel insights into genetics of reading disabilities

    Get PDF
    Peer reviewe

    Genome-wide analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people

    Get PDF
    The use of spoken and written language is a fundamental human capacity. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30 to 80% depending on the trait. The genetic architecture is complex, heterogeneous, and multifactorial, but investigations of contributions of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures (word reading, nonword reading, spelling, phoneme awareness, and nonword repetition) in samples of 13,633 to 33,959 participants aged 5 to 26 y. We identified genome-wide significant association with word reading (rs11208009, P = 1.098 x 10(-8)) at a locus that has not been associated with intelligence or educational attainment. All five reading-/language-related traits showed robust SNP heritability, accounting for 13 to 26% of trait variability. Genomic structural equation modeling revealed a shared genetic factor explaining most of the variation in word/nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence, and educational attainment. A multivariate GWAS of word/nonword reading, spelling, and phoneme awareness maximized power for follow-up investigation. Genetic correlation analysis with neuroimaging traits identified an association with the surface area of the banks of the left superior temporal sulcus, a brain region linked to the processing of spoken and written language. Heritability was enriched for genomic elements regulating gene expression in the fetal brain and in chromosomal regions that are depleted of Neanderthal variants. Together, these results provide avenues for deciphering the biological underpinnings of uniquely human traits.Peer reviewe

    Language and reading impairments are associated with increased prevalence of non‐right‐handedness

    Get PDF
    Handedness has been studied for association with language‐related disorders because of its link with language hemispheric dominance. No clear pattern has emerged, possibly because of small samples, publication bias, and heterogeneous criteria across studies. Non‐right‐handedness (NRH) frequency was assessed in N = 2503 cases with reading and/or language impairment and N = 4316 sex‐matched controls identified from 10 distinct cohorts (age range 6–19 years old; European ethnicity) using a priori set criteria. A meta‐analysis (Ncases = 1994) showed elevated NRH % in individuals with language/reading impairment compared with controls (OR = 1.21, CI = 1.06–1.39, p = .01). The association between reading/language impairments and NRH could result from shared pathways underlying brain lateralization, handedness, and cognitive functions

    Genome-wide analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people

    Get PDF
    The use of spoken and written language is a fundamental human capacity. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30-80%, depending on the trait. The genetic architecture is complex, heterogeneous, and multifactorial, but investigations of contributions of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures: word reading, nonword reading, spelling, phoneme awareness, and nonword repetition, in samples of 13,633 to 33,959 participants aged 5-26 years. We identified genome-wide significant association with word reading (rs11208009, p=1.098 x 10-8) at a locus that has not been associated with intelligence or educational attainment. All five reading-/language-related traits showed robust SNP-heritability, accounting for 13-26% of trait variability. Genomic structural equation modelling revealed a shared genetic factor explaining most variation in word/nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence and educational attainment. A multivariate GWAS of word/nonword reading, spelling, and phoneme awareness maximized power for follow-up investigation. Genetic correlation analysis of multivariate GWAS results with neuroimaging traits identified association with the surface area of the banks of the left superior temporal sulcus, a brain region linked to processing of spoken and written language. Heritability was enriched for genomic elements regulating gene expression in the fetal brain, and in chromosomal regions that are depleted of Neanderthal variants. Together, these results provide new avenues for deciphering the biological underpinnings of uniquely human traits

    The KIAA0319-Like(KIAA0319L)gene on chromosome 1p34 as a candidate for reading disabilities

    No full text
    A locus on chromosome 1p34-36 (DYX8) has been linked to developmental dyslexia or reading disabilities (RD) in three independent samples. In the current study, we investigated a candidate gene KIAA0319-Like (KIAA0319L) within DYX8, as it is homologous to KIAA0319, a strong RD candidate gene on chromosome 6p (DYX2). Association was assessed by using five tagging single nucleotide polymorphisms in a sample of 291 nuclear families ascertained through a proband with reading difficulties. Evidence of association was found for a single marker (rs7523017; P=0.042) and a haplotype (P=0.031), with RD defined as a categorical trait in a subset of the sample (n=156 families) with a proband that made our criteria for RD. The same haplotype also showed evidence for association with quantitative measures of word-reading efficiency (i.e., a composite score of word identification and decoding; P=0.032) and rapid naming of objects and colors (P=0.047) when analyzed using the entire sample. Although the results from the current study are modestly significant and would not withstand a correction for multiple testing, KIAA0319L remains an intriguing positional and functional candidate for RD, especially when considered alongside the supporting evidence for its homolog KIAA0319 on chromosome 6p. Additional studies in independent samples are now required to confirm these findings
    corecore