8 research outputs found

    Two PDZ binding motifs within NS5 have roles in Tick-borne encephalitis virus replication

    Get PDF
    AbstractThe flavivirus genus includes important human neurotropic pathogens like Tick-borne encephalitis virus (TBEV) and West-Nile virus (WNV). Flavivirus replication occurs at replication complexes, where the NS5 protein provides both RNA cap methyltransferase and RNA-dependent RNA polymerase activities. TBEVNS5 contains two PDZ binding motifs (PBMs) important for specific targeting of human PDZ proteins including Scribble, an association important for viral down regulation of cellular defense systems and neurite outgrowth.To determine whether the PBMs of TBEVNS5 affects virus replication we constructed a DNA based sub-genomic TBEV replicon expressing firefly luciferase. The PBMs within NS5 were mutated individually and in concert and the replicons were assayed in cell culture. Our results show that the replication rate was impaired in all mutants, which indicates that PDZ dependent host interactions influence TBEV replication. We also find that the C-terminal PBMs present in TBEVNS5 and WNVNS5 are targeting various human PDZ domain proteins. TBEVNS5 has affinity to Zonula occludens-2 (ZO-2), GIAP C-terminus interacting protein (GIPC), calcium/calmodulin-dependent serine protein kinase (CASK), glutamate receptor interacting protein 2, (GRIP2) and Interleukin 16 (IL-16). A different pattern was observed for WNVNS5 as it associate with a broader repertoire of putative host PDZ proteins

    The Hippo component YAP localizes in the nucleus of human papilloma virus positive oropharyngeal squamous cell carcinoma

    Get PDF
    Background: HPV infection causes cervical cancer, mediated in part by the degradation of Scribble via the HPV E6 oncoprotein. Recently, Scribble has been shown to be an important regulator of the Hippo signaling cascade. Deregulation of the Hippo pathway induces an abnormal cellular transformation, epithelial to mesenchymal transition, which promotes oncogenic progression. Given the recent rise in oropharyngeal HPV squamous cell carcinoma we sought to determine if Hippo signaling components are implicated in oropharyngeal squamous cell carcinoma. Methods: Molecular and cellular techniques including immunoprecipiations, Western blotting and immunocytochemistry were used to identify the key Hippo pathway effector Yes-Associated Protein (YAP)1. Oropharyngeal tissue was collected from CO2 laser resections, and probed with YAP1 antibody in tumor and pre-malignant regions of HPV positive OPSCC tissue. Results: This study reveals that the Scribble binding protein Nitric Oxide Synthase 1 Adaptor Protein (NOS1AP) forms a complex with YAP. Further, the NOS1APa and NOS1APc isoforms show differential association with activated and non-activated YAP, and impact cellular proliferation. Consistent with deregulated Hippo signaling in OPSCC HPV tumors, we see a delocalization of Scribble and increased nuclear accumulation of YAP1 in an HPV-positive OPSCC. Conclusion: Our preliminary data indicates that NOS1AP isoforms differentially associate with YAP1, which, together with our previous findings, predicts that loss of YAP1 enhances cellular transformation. Moreover, YAP1 is highly accumulated in the nucleus of HPV-positive OPSCC, implying that Hippo signaling and possibly NOS1AP expression are de-regulated in OPSCC. Further studies will help determine if NOS1AP isoforms, Scribble and Hippo components will be useful biomarkers in OPSCC tumor biology

    Roles of mammalian Scribble in polarity signaling, virus offense and cell-fate determination

    No full text
    Mammalian Scribble is a target for proteins encoded by human papilloma virus, retro- and flaviviruses. Tick-borne encephalitis virus (TBEV) is a flavivirus that have evolved distinct strategies to escape antiviral responses. Information of how flaviviruses intrude on cell integrity comes from understanding of the roles that host-factors play when they interfere with viruses. The first part of this thesis describes a novel interaction between the TBEVNS5 protein and Scribble. The importance of the interaction was demonstrated by RNAi-mediated depletion of Scribble, which prevented suppression of JAK-STAT signaling by NS5. Together, these results define Scribble as a novel target for NS5. TBEV is known to cause central nervous system disease TBE in humans that can lead to cognitive dysfunction. A unifying theme in CNS related diseases are defects in neuronal extensions. We therefore addressed the effects of TBEV expression in PC12 cell differentiation, which is characterized by extensive neurite growth. Our data show that TBEVNS5 suppresses neurite outgrowth through the Rho GTPase Rac1. These findings provide evidence that Rac1 is an indirect target of NS5 in neurite inhibition. Scribble was recently implicated in spine morphogenesis. Thus, we tested the role of Scribble in neurite elongation. Depletion of Scribble in PC12 cells, reduced neurite density but increased length of those remaining. Moreover, Scribble bound components in the Ras/ERK cascade in a growth factor dependent manner. Together, these results demonstrate that Scribble controls neurite elongation by scaffolding MAPK components. Moreover, as loss of dendritic spines, actin-rich protrusions on neurons, is a feature in cognitive dysfunction we speculate that cognitive dysfunction in TBE might involve disturbed Scribble expression by NS5. We also investigated the binding between NS1 of Influenza A virus and Scribble. The PDZ domains of Scribble are usually selective for specific C-terminal motifs in proteins. Because NS1 has a canonical PDZ motif we tested if binding to Scribble depends on this motif. We found that Scribble binds NS1; the association is dependent on the NS1 C-terminus that is recognized by PDZ3-4 of Scribble. Together, these results suggest that Scribble is a target for the H5N1 NS1 protein At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: In press. Paper 3: Manuscript. Paper 4: Manuscript

    Roles of mammalian Scribble in polarity signaling, virus offense and cell-fate determination

    No full text
    Mammalian Scribble is a target for proteins encoded by human papilloma virus, retro- and flaviviruses. Tick-borne encephalitis virus (TBEV) is a flavivirus that have evolved distinct strategies to escape antiviral responses. Information of how flaviviruses intrude on cell integrity comes from understanding of the roles that host-factors play when they interfere with viruses. The first part of this thesis describes a novel interaction between the TBEVNS5 protein and Scribble. The importance of the interaction was demonstrated by RNAi-mediated depletion of Scribble, which prevented suppression of JAK-STAT signaling by NS5. Together, these results define Scribble as a novel target for NS5. TBEV is known to cause central nervous system disease TBE in humans that can lead to cognitive dysfunction. A unifying theme in CNS related diseases are defects in neuronal extensions. We therefore addressed the effects of TBEV expression in PC12 cell differentiation, which is characterized by extensive neurite growth. Our data show that TBEVNS5 suppresses neurite outgrowth through the Rho GTPase Rac1. These findings provide evidence that Rac1 is an indirect target of NS5 in neurite inhibition. Scribble was recently implicated in spine morphogenesis. Thus, we tested the role of Scribble in neurite elongation. Depletion of Scribble in PC12 cells, reduced neurite density but increased length of those remaining. Moreover, Scribble bound components in the Ras/ERK cascade in a growth factor dependent manner. Together, these results demonstrate that Scribble controls neurite elongation by scaffolding MAPK components. Moreover, as loss of dendritic spines, actin-rich protrusions on neurons, is a feature in cognitive dysfunction we speculate that cognitive dysfunction in TBE might involve disturbed Scribble expression by NS5. We also investigated the binding between NS1 of Influenza A virus and Scribble. The PDZ domains of Scribble are usually selective for specific C-terminal motifs in proteins. Because NS1 has a canonical PDZ motif we tested if binding to Scribble depends on this motif. We found that Scribble binds NS1; the association is dependent on the NS1 C-terminus that is recognized by PDZ3-4 of Scribble. Together, these results suggest that Scribble is a target for the H5N1 NS1 protein At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: In press. Paper 3: Manuscript. Paper 4: Manuscript

    Novel Targets and Therapeutic Strategies for Promoting Organ Repair and Regeneration

    No full text
    Strategies to create functional organs and tissues is of great interest for use in regenerative medicine in order to repair or replace the lost tissues due to injury, disease, as well as aging. Several new treatment options, including stem cell treatments and tissue-engineered substitutes for certain indications, have been approved by Food and Drug Administration (FDA) and are currently available. This special issue will cover new therapies and strategies that are currently being investigated under preclinical and clinical settings
    corecore