123 research outputs found

    Making SPIFFI SPIFFIER: Upgrade of the SPIFFI instrument for use in ERIS and performance analysis from re-commissioning

    Full text link
    SPIFFI is an AO-fed integral field spectrograph operating as part of SINFONI on the VLT, which will be upgraded and reused as SPIFFIER in the new VLT instrument ERIS. In January 2016, we used new technology developments to perform an early upgrade to optical subsystems in the SPIFFI instrument so ongoing scientific programs can make use of enhanced performance before ERIS arrives in 2020. We report on the upgraded components and the performance of SPIFFI after the upgrade, including gains in throughput and spatial and spectral resolution. We show results from re-commissioning, highlighting the potential for scientific programs to use the capabilities of the upgraded SPIFFI. Finally, we discuss the additional upgrades for SPIFFIER which will be implemented before it is integrated into ERIS.Comment: 20 pages, 12 figures. Proceedings from SPIE Astronomical Telescopes and Instrumentation 201

    Methods for multiple telescope beam imaging and guiding in the near infrared

    Full text link
    Atmospheric turbulence and precise measurement of the astrometric baseline vector between any two telescopes are two major challenges in implementing phase referenced interferometric astrometry and imaging. They limit the performance of a fibre-fed interferometer by degrading the instrument sensitivity and astrometric measurements precision and by introducing image reconstruction errors due to inaccurate phases. A multiple beam acquisition and guiding camera was built to meet these challenges for a recently commissioned four beam combiner instrument, GRAVITY, at the ESO Very Large Telescope Interferometer. For each telescope beam it measures: a) field tip-tilts by imaging stars in the sky; b) telescope pupil shifts by imaging pupil reference laser beacons installed on each telescope using a 2×22 \times 2 lenslet; c) higher order aberrations using a 9×99 \times 9 Shack-Hartmann. The telescope pupils are imaged for a visual monitoring while observing. These measurements enable active field and pupil guiding by actuating a train of tip-tilt mirrors placed in the pupil and field planes, respectively. The Shack-Hartmann measured quasi-static aberrations are used to focus the Auxiliary Telescopes and allow the possibility of correcting the non-common path errors between the Unit Telescopes adaptive optics systems and GRAVITY. The guiding stabilizes light injection into single-mode fibres, increasing sensitivity and reducing the astrometric and image reconstruction errors. The beam guiding enables to achieve astrometric error less than 50μ50\,\muas. Here, we report on the data reduction methods and laboratory tests of the multiple beam acquisition and guiding camera and its performance on-sky.Comment: 12 pages, 20 figures and 7 tables. Accepted for publication in MNRA

    Methods for multiple-telescope beam imaging and guiding in the near-infrared

    Get PDF
    This is the final version. Available from OUP via the DOI in this recordAtmospheric turbulence and precise measurement of the astrometric baseline vector between any two telescopes are two major challenges in implementing phase-referenced interferometric astrometry and imaging. They limit the performance of a fibre-fed interferometer by degrading the instrument sensitivity and the precision of astrometric measurements and by introducing image reconstruction errors due to inaccurate phases. A multiple-beam acquisition and guiding camera was built to meet these challenges for a recently commissioned four-beam combiner instrument, GRAVITY, at the European Southern Observatory Very Large Telescope Interferometer. For each telescope beam, it measures (a) field tip-tilts by imaging stars in the sky, (b) telescope pupil shifts by imaging pupil reference laser beacons installed on each telescope using a 2×2 lenslet and (c) higher-order aberrations using a 9 ×9 Shack-Hartmann. The telescope pupils are imaged to provide visual monitoring while observing. These measurements enable active field and pupil guiding by actuating a train of tip-tilt mirrors placed in the pupil and field planes, respectively. The Shack-Hartmann measured quasi-static aberrations are used to focus the auxiliary telescopes and allow the possibility of correcting the non-common path errors between the adaptive optics systems of the unit telescopes and GRAVITY. The guiding stabilizes the light injection into single-mode fibres, increasing sensitivity and reducing the astrometric and image reconstruction errors. The beam guiding enables us to achieve an astrometric error of less than 50 μas. Here, we report on the data reduction methods and laboratory tests of the multiple-beam acquisition and guiding camera and its performance on-sky.Fundação para a Ciência e a TecnologiaEuropean Commissio

    The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory

    Get PDF
    The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submillimetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16x25 pixels, each, and two filled silicon bolometer arrays with 16x32 and 32x64 pixels, respectively, to perform integral-field spectroscopy and imaging photometry in the 60-210\mu\ m wavelength regime. In photometry mode, it simultaneously images two bands, 60-85\mu\ m or 85-125\mu\m and 125-210\mu\ m, over a field of view of ~1.75'x3.5', with close to Nyquist beam sampling in each band. In spectroscopy mode, it images a field of 47"x47", resolved into 5x5 pixels, with an instantaneous spectral coverage of ~1500km/s and a spectral resolution of ~175km/s. We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the Performance Verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions

    First direct detection of an exoplanet by optical interferometry; Astrometry and K-band spectroscopy of HR8799 e

    Get PDF
    To date, infrared interferometry at best achieved contrast ratios of a few times 10410^{-4} on bright targets. GRAVITY, with its dual-field mode, is now capable of high contrast observations, enabling the direct observation of exoplanets. We demonstrate the technique on HR8799, a young planetary system composed of four known giant exoplanets. We used the GRAVITY fringe tracker to lock the fringes on the central star, and integrated off-axis on the HR8799e planet situated at 390 mas from the star. Data reduction included post-processing to remove the flux leaking from the central star and to extract the coherent flux of the planet. The inferred K band spectrum of the planet has a spectral resolution of 500. We also derive the astrometric position of the planet relative to the star with a precision on the order of 100μ\,\muas. The GRAVITY astrometric measurement disfavors perfectly coplanar stable orbital solutions. A small adjustment of a few degrees to the orbital inclination of HR 8799 e can resolve the tension, implying that the orbits are close to, but not strictly coplanar. The spectrum, with a signal-to-noise ratio of 5\approx 5 per spectral channel, is compatible with a late-type L brown dwarf. Using Exo-REM synthetic spectra, we derive a temperature of 1150±501150\pm50\,K and a surface gravity of 104.3±0.310^{4.3\pm0.3}\,cm/s2^{2}. This corresponds to a radius of 1.170.11+0.13RJup1.17^{+0.13}_{-0.11}\,R_{\rm Jup} and a mass of 104+7MJup10^{+7}_{-4}\,M_{\rm Jup}, which is an independent confirmation of mass estimates from evolutionary models. Our results demonstrate the power of interferometry for the direct detection and spectroscopic study of exoplanets at close angular separations from their stars.Comment: published in A&

    GMP-selected dual and lensed AGNs: selection function and classification based on near-IR colors and resolved spectra from VLT/ERIS, KECK/OSIRIS, and LBT/LUCI

    Full text link
    The Gaia-Multi-Peak (GMP) technique can be used to identify large numbers of dual or lensed AGN candidates at sub-arcsec separation, allowing us to study both multiple SMBHs in the same galaxy and rare, compact lensed systems. The observed samples can be used to test the predictions of the models of SMBH merging once 1) the selection function of the GMP technique is known, and 2) each system has been classified as dual AGN, lensed AGN, or AGN/star alignment. Here we show that the GMP selection is very efficient for separations above 0.15'' when the secondary (fainter) object has magnitude G<20.5. We present the spectroscopic classification of five GMP candidates using VLT/ERIS and Keck/OSIRIS, and compare them with the classifications obtained from: a) the near-IR colors of 7 systems obtained with LBT/LUCI, and b) the analysis of the total, spatially-unresolved spectra. We conclude that colors and integrated spectra can already provide reliable classifications of many systems. Finally, we summarize the confirmed dual AGNs at z>0.5 selected by the GMP technique, and compare this sample with other such systems from the literature, concluding that GMP can provide a large number of confirmed dual AGNs at separations below 7 kpc.Comment: 14 pages,A&A, in pres

    Accretion-ejection morphology of the microquasar SS 433 resolved at sub-au scale

    Get PDF
    This is the author accepted manuscript. the final version is available from EDP Sciences via the DOI in this recordWe present the first optical observation of the microquasar SS 433 at sub-milliarcsecond (mas) scale obtained with the GRAVITY instrument on the Very Large Telescope interferometer (VLTI). The 3.5-h exposure reveals a rich K-band spectrum dominated by hydrogen Brγand He i lines, as well as (red-shifted)emission lines coming from the jets. The K-band-continuum-emitting region is dominated by a marginally resolved point source (<1 mas) embedded inside a diffuse background accounting for 10% of the total flux. The jet line positions agree well with the ones expected from the jet kinematic model, an interpretation also supported by the consistent sign (i.e., negative/positive for the receding/approaching jet component) of the phase shifts observed in the lines. The significant visibility drop across the jet lines, together with the small and nearly identical phases for all baselines, point toward a jet that is offset by less than 0.5 mas from the continuum source and resolved in the direction of propagation, with a typical size of 2 mas. The jet position angle of ~80° is consistent with the expected one at the observation date. Jet emission so close to the central binary system would suggest that line locking, if relevant to explain the amplitude and stability of the 0.26c jet velocity, operates on elements heavier than hydrogen. The Brγprofile is broad and double peaked. It is better resolved than the continuum and the change of the phase signal sign across the line on all baselines suggests an East-West-oriented geometry similar to the jet direction and supporting a (polar) disk wind origin.Centre National d’Etudes Spatiales (CNES)Programme National Hautes Energies (PNHE)Humboldt FoundationNAS

    Submilliarcsecond Optical Interferometry of the High-mass X-Ray Binary BP Cru with VLTI/GRAVITY

    Get PDF
    This is the final version. Available from American Astronomical Society via the DOI in this recordWe observe the high-mass X-ray binary (HMXB) BP Cru using interferometry in the near-infrared K band with VLTI/GRAVITY. Continuum visibilities are at most partially resolved, consistent with the predicted size of the hypergiant. Differential visibility amplitude () and phase () signatures are observed across the He i and Brγ lines, the latter seen strongly in emission, unusual for the donor star's spectral type. For a baseline m, the differential phase rms corresponds to an astrometric precision of . We generalize expressions for image centroid displacements and variances in the marginally resolved limit of interferometry to spectrally resolved data, and use them to derive model-independent properties of the emission such as its asymmetry, extension, and strong wavelength dependence. We propose geometric models based on an extended and distorted wind and/or a high-density gas stream, which has long been predicted to be present in this system. The observations show that optical interferometry is now able to resolve HMXBs at the spatial scale where accretion takes place, and therefore to probe the effects of the gravitational and radiation fields of the compact object on its environment

    First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer

    Get PDF
    This is the author accepted manuscript. the final version is available from EDP Sciences via the DOI in this recordGRAVITY is a new instrument to coherently combine the light of the European Southern Observatory Very Large Telescope Interferometer to form a telescope with an equivalent 130 m diameter angular resolution and a collecting area of 200 m2. The instrument comprises fiber fed integrated optics beam combination, high resolution spectroscopy, built-in beam analysis and control, near-infrared wavefront sensing, phase-tracking, dual-beam operation, and laser metrology. GRAVITY opens up to optical/infrared interferometry the techniques of phase referenced imaging and narrow angle astrometry, in many aspects following the concepts of radio interferometry. This article gives an overview of GRAVITY and reports on the performance and the first astronomical observations during commissioning in 2015/16. We demonstrate phase-tracking on stars as faint as mK ≈ 10 mag, phase-referenced interferometry of objects fainter than mK ≈ 15 mag with a limiting magnitude of mK ≈ 17 mag, minute long coherent integrations, a visibility accuracy of better than 0.25%, and spectro-differential phase and closure phase accuracy better than 0.5°, corresponding to a differential astrometric precision of better than ten microarcseconds (μas). The dual-beam astrometry, measuring the phase difference of two objects with laser metrology, is still under commissioning. First observations show residuals as low as 50 μas when following objects over several months. We illustrate the instrument performance with the observations of archetypical objects for the different instrument modes. Examples include the Galactic center supermassive black hole and its fast orbiting star S2 for phase referenced dual-beam observations and infrared wavefront sensing, the high mass X-ray binary BP Cru and the active galactic nucleus of PDS 456 for a few μas spectro-differential astrometry, the T Tauri star S CrA for a spectro-differential visibility analysis, ξ Tel and 24 Cap for high accuracy visibility observations, and η Car for interferometric imaging with GRAVITY.Agence Nationale de la RechercheAlexander von Humboldt FoundationEuropean Union, Seventh Framework Programm
    corecore