976 research outputs found

    Core excitation in Ozone localized to one of two symmetry-equivalent chemical bonds - molecular alignment through vibronic coupling

    Full text link
    Core excitation from terminal oxygen OT_T in O3_3 is shown to be an excitation from a localized core orbital to a localized valence orbital. The valence orbital is localized to one of the two equivalent chemical bonds. We experimentally demonstrate this with the Auger Doppler effect which is observable when O3_3 is core-excited to the highly dissociative OT_{T}1s1^{-1}7a11_1^1 state. Auger electrons emitted from the atomic oxygen fragment carry information about the molecular orientation relative to the electromagnetic field vector at the moment of excitation. The data together with analytical functions for the electron-peak profiles give clear evidence that the preferred molecular orientation for excitation only depends on the orientation of one bond, not on the total molecular orientation. The localization of the valence orbital "7a1_1" is caused by mixing of the valence orbital "5b2_2" through vibronic coupling of anti-symmetric stretching mode with b2_2-symmetry. To the best of our knowledge, it is the first discussion of the localization of a core excitation of O3_3. This result explains the success of the widely used assumption of localized core excitation in adsorbates and large molecules

    Quantifying nonorthogonality

    Get PDF
    An exploratory approach to the possibility of analyzing nonorthogonality as a quantifiable property is presented. Three different measures for the nonorthogonality of pure states are introduced, and one of these measures is extended to single-particle density matrices using methods that are similar to recently introduced techniques for quantifying entanglement. Several interesting special cases are considered. It is pointed out that a measure of nonorthogonality can meaningfully be associated with a single mixed quantum state. It is then shown how nonorthogonality can be unlocked with classical information; this analysis reveals interesting inequalities and points to a number of connections between nonorthogonality and entanglement.Comment: Accepted for publication in Phys. Rev.

    Ultrafast nonlinear response of gold gyroid three-dimensional metamaterials

    Get PDF
    We explore the nonlinear optical response of 3D gyroidal metamaterials, which show >10-fold enhancements compared to all other metallic nanomaterials as well as bulk gold. A simple analytical model for this metamaterial response shows how the reflectivity spectrum scales with the metal fill fraction and the refractive index of the material that the metallic nanostructure is embedded in. The ultrafast response arising from the interconnected 3D nanostructure can be separated into electronic and lattice contributions with strong spectral dependences on the dielectric filling of the gyroids, which invert the sign of the nonlinear transient reflectivity changes. These metamaterials thus provide a wide variety of tuneable nonlinear optical properties, which can be utilised for frequency mixing, optical switching, phase modulators, novel emitters, and enhanced sensing.This is the author's accepted manuscript. The final version is available from APS in Physical Review Applied at http://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.2.044002#fulltext#fulltext

    Gyroid Optical Metamaterials: Calculating the Effective Permittivity of Multidomain Samples

    Get PDF
    Gold gyroid optical metamaterials are known to possess a reduced plasma frequency and linear dichroism imparted by their intricate subwavelength single gyroid morphology. The anisotropic optical properties are, however, only evident when a large individual gyroid domain is investigated. Multidomain gyroid metamaterials, fabricated using a polyisoprene-bb-polystyrene-bb-poly(ethylene oxide) triblock terpolymer and consisting of multiple small gyroid domains with random orientation and handedness, instead exhibit isotropic optical properties. Comparing three effective medium models, we here show that the specular reflectance spectra of such multidomain gyroid optical metamaterials can be accurately modeled over a broad range of incident angles by a Bruggeman effective medium consisting of a random wire array. This model accurately reproduces previously published results tracking the variation in normal incidence reflectance spectra of gold gyroid optical metamaterials as a function of host refractive index and volume fill fraction of gold. The effective permittivity derived from this theory confirms the change in sign of the real part of the permittivity in the visible spectral region (so, that gold gyroid metamaterials exhibit both dielectric and metallic behavior at optical wavelengths). That a Bruggeman effective medium can accurately model the experimental reflectance spectra implies that small multidomain gold gyroid optical metamaterials behave both qualitatively and quantitatively as an amorphous composite of gold and air (i.e., nanoporous gold) and that coherent electromagnetic contributions arising from the subwavelength gyroid symmetry are not dominant.This research was supported through the Swiss National Science Foundation through the National Center of Competence in Research Bio-Inspired Materials and grant numbers 200021_163220 (to U.S.) and PZ00P2_168223 (to B.D.W.), the Adolphe Merkle Foundation, the Engineering and Physical Sciences Research Council (EPSRC) through the Cambridge NanoDTC EP/G037221/1, EP/L027151/1, and EP/ G060649/1, and ERC LINASS 320503 and from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement no. 706329 (to I.G.). Y.G. and U.W. thank the National Science Foundation (DMR-1409105) for financial support

    Photoinduced 3D orientational order in side chain liquid crystalline azopolymers

    Full text link
    We apply experimental technique based on the combination of methods dealing with principal refractive indices and absorption coefficients to study the photoinduced 3D orientational order in the films of liquid crystalline (LC) azopolymers. The technique is used to identify 3D orientational configurations of trans azobenzene chromophores and to characterize the degree of ordering in terms of order parameters. We study two types of LC azopolymers which form structures with preferred in-plane and out-of-plane alignment of azochromophores, correspondingly. Using irradiation with the polarized light of two different wavelengths we find that the kinetics of photoinduced anisotropy can be dominated by either photo-reorientation or photoselection mechanisms depending on the wavelength. We formulate the phenomenological model describing the kinetics of photoinduced anisotropy in terms of the isomer concentrations and the order parameter tensor. We present the numerical results for absorption coefficients that are found to be in good agreement with the experimental data. The model is also used to interpret the effect of changing the mechanism with the wavelength of the pumping light.Comment: uses revtex4 28 pages, 10 figure

    Experimental study of photoionization of ozone in the 12 to 21 eV region

    Get PDF
    The total and partial ion yield of ozone using time-of-flight is presented. The measurements were done using multicoincidence between a photoelectron and a photoion (PEPICO). Comparison with the photoelectron spectrum and previous measurements using other techniques allowed the assignment of most broad features in the spectra. Kinetic energy released is obtained for O+ and O-2(+) ions. A discussion about the dissociation channels is included. (C) 2001 American Institute of Physics.115115041504

    Pulsar Searches with the SKA

    Get PDF
    The Square Kilometre Array will be an amazing instrument for pulsar astronomy. While the full SKA will be sensitive enough to detect all pulsars in the Galaxy visible from Earth, already with SKA1, pulsar searches will discover enough pulsars to increase the currently known population by a factor of four, no doubt including a range of amazing unknown sources. Real time processing is needed to deal with the 60 PB of pulsar search data collected per day, using a signal processing pipeline required to perform more than 10 POps. Here we present the suggested design of the pulsar search engine for the SKA and discuss challenges and solutions to the pulsar search venture.Comment: 4 pages, 1 figure. To be published in Proceedings of IAU Symposium 337: Pulsar Astrophysics - The Next 50 Year

    The Uncertainty Principle in the Presence of Quantum Memory

    Full text link
    The uncertainty principle, originally formulated by Heisenberg, dramatically illustrates the difference between classical and quantum mechanics. The principle bounds the uncertainties about the outcomes of two incompatible measurements, such as position and momentum, on a particle. It implies that one cannot predict the outcomes for both possible choices of measurement to arbitrary precision, even if information about the preparation of the particle is available in a classical memory. However, if the particle is prepared entangled with a quantum memory, a device which is likely to soon be available, it is possible to predict the outcomes for both measurement choices precisely. In this work we strengthen the uncertainty principle to incorporate this case, providing a lower bound on the uncertainties which depends on the amount of entanglement between the particle and the quantum memory. We detail the application of our result to witnessing entanglement and to quantum key distribution.Comment: 5 pages plus 12 of supplementary information. Updated to match the journal versio
    corecore