11 research outputs found

    Rap1 up-regulation and activation on plasma membrane regulates T cell adhesion

    Get PDF
    Rap1 and Ras are closely related GTPases that share some effectors but have distinct functions. We studied the subcellular localization of Rap1 and its sites of activation in living cells. Both GFP-tagged Rap1 and endogenous Rap1 were localized to the plasma membrane (PM) and endosomes. The PM association of GFP-Rap1 was dependent on GTP binding, and GFP-Rap1 was rapidly up-regulated on this compartment in response to mitogens, a process blocked by inhibitors of endosome recycling. A novel fluorescent probe for GTP-bound Rap1 revealed that this GTPase was transiently activated only on the PM of both fibroblasts and T cells. Activation on the PM was blocked by inhibitors of endosome recycling. Moreover, inhibition of endosome recycling blocked the ability of Rap1 to promote integrin-mediated adhesion of T cells. Thus, unlike Ras, the membrane localizations of Rap1 are dynamically regulated, and the PM is the principle platform from which Rap1 signaling emanates. These observations may explain some of the biological differences between these GTPases

    Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: identity of the hypoxic sensor

    No full text
    The mechanisms responsible for sensing hypoxia and initiating hypoxic pulmonary vasoconstriction (HPV) are unclear. We therefore examined the roles of the mitochondrial electron transport chain (ETC) and glycolysis in HPV of rat small intrapulmonary arteries (IPAs).HPV demonstrated a transient constriction (phase 1) superimposed on a sustained constriction (phase 2). Inhibition of complex I of the ETC with rotenone (100 nm) or complex III with myxothiazol (100 nm) did not cause vasoconstriction in normoxia, but abolished both phases of HPV. Rotenone inhibited the hypoxia-induced rise in intracellular Ca2+ ([Ca2+]i). Succinate (5 mm), a substrate for complex II, reversed the effects of rotenone but not myxothiazol on HPV, but did not affect the rise in NAD(P)H fluorescence induced by hypoxia or rotenone. Inhibition of cytochrome oxidase with cyanide (100 μm) potentiated phase 2 constriction.Phase 2 of HPV, but not phase 1, was highly correlated with glucose concentration, being potentiated by 15 mm but abolished in its absence, or following inhibition of glycolysis by iodoacetate or 2-deoxyglucose. Glucose concentration did not affect the rise in [Ca2+]i during HPV.Depolarisation-induced constriction was unaffected by hypoxia except in the absence of glucose, when it was depressed by ∼50 %. Depolarisation-induced constriction was depressed by rotenone during hypoxia by 23 ± 4 %; cyanide was without effect.Hypoxia increased 2-deoxy-[3H]glucose uptake in endothelium-denuded IPAs by 235 ± 32 %, and in mesenteric arteries by 218 ± 38 %.We conclude that complex III of the mitochondrial ETC acts as the hypoxic sensor in HPV, and initiates the rise in smooth muscle [Ca2+]i by a mechanism unrelated to changes in cytosolic redox state per se, but more probably by increased production of superoxide. Additionally, glucose and glycolysis are essential for development of the sustained phase 2 of HPV, and support an endothelium-dependent Ca2+-sensitisation pathway rather than the rise in [Ca2+]i

    Genetic Admixture and Survival in Diverse Populations with Pulmonary Arterial Hypertension

    No full text
    Rationale: Limited information is available on racial/ethnic differences in pulmonary arterial hypertension (PAH). Objectives: Determine effects of race/ethnicity and ancestry on mortality and disease outcomes in diverse patients with PAH. Methods: Patients with Group 1 PAH were included from two national registries with genome-wide data and two local cohorts, and further incorporated in a global meta-analysis. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated for transplant-free, all-cause mortality in Hispanic patients with non-Hispanic white (NHW) patients as the reference group. Odds ratios (ORs) for inpatient-specific mortality in patients with PAH were also calculated for race/ethnic groups from an additional National Inpatient Sample dataset not included in the meta-analysis. Measurements and Main Results: After covariate adjustment, self-reported Hispanic patients (n = 290) exhibited significantly reduced mortality versus NHW patients (n = 1,970) after global meta-analysis (HR, 0.60 [95% CI, 0.41-0.87]; P = 0.008). Although not significant, increasing Native American genetic ancestry appeared to account for part of the observed mortality benefit (HR, 0.48 [95% CI, 0.23-1.01]; P= 0.053) in the two national registries. Finally, in the National Inpatient Sample, an inpatient mortality benefit was also observed for Hispanic patients (n = 1,524) versus NHW patients (n = 8,829; OR, 0.65 [95% CI, 0.50-0.84]; P = 0.001). An inpatient mortality benefit was observed for Native American patients (n = 185; OR, 0.38 [95% CI, 0.15-0.93]; P= 0.034). Conclusions: This study demonstrates a reproducible survival benefit for Hispanic patients with Group 1 PAH in multiple clinical settings. Our results implicate contributions of genetic ancestry to differential survival in PAH.12 month embargo; published online: 9 January 2020This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    PKC Regulates a Farnesyl-Electrostatic Switch on K-Ras that Promotes its Association with Bcl-Xl on Mitochondria and Induces Apoptosis

    No full text
    K-Ras associates with the plasma membrane (PM) through farnesylation that functions in conjunction with an adjacent polybasic sequence. We show that phosphorylation by protein kinase C (PKC) of S181 within the polybasic region promotes rapid dissociation of K-Ras from the PM and association with intracellular membranes, including the outer membrane of mitochondria where phospho-K-Ras interacts with Bcl-Xl. PKC agonists promote apoptosis of cells transformed with oncogenic K-Ras in a S181-dependent manner. K-Ras with a phosphomimetic residue at position 181 induces apoptosis via a pathway that requires Bcl-Xl. The PKC agonist bryostatin-1 inhibited the growth in vitro and in vivo of cells transformed with oncogenic K-Ras in a S181-dependent fashion. These data demonstrate that the location and function of K-Ras are regulated directly by PKC and suggest an approach to therapy of K-Ras-dependent tumors with agents that stimulate phosphorylation of S18

    De Novo Pathogenic Variants in CACNA1E Cause Developmental and Epileptic Encephalopathy with Contractures, Macrocephaly, and Dyskinesias

    No full text
    International audienceDevelopmental and epileptic encephalopathies (DEEs) are severe neurodevelopmental disorders often beginning in infancy or early childhood that are characterized by intractable seizures, abundant epileptiform activity on EEG, and developmental impairment or regression. CACNA1E is highly expressed in the central nervous system and encodes the α1-subunit of the voltage-gated CaV2.3 channel, which conducts high voltage-activated R-type calcium currents that initiate synaptic transmission. Using next-generation sequencing techniques, we identified de novo CACNA1E variants in 30 individuals with DEE, characterized by refractory infantile-onset seizures, severe hypotonia, and profound developmental impairment, often with congenital contractures, macrocephaly, hyperkinetic movement disorders, and early death. Most of the 14, partially recurring, variants cluster within the cytoplasmic ends of all four S6 segments, which form the presumed CaV2.3 channel activation gate. Functional analysis of several S6 variants revealed consistent gain-of-function effects comprising facilitated voltage-dependent activation and slowed inactivation. Another variant located in the domain II S4-S5 linker results in facilitated activation and increased current density. Five participants achieved seizure freedom on the anti-epileptic drug topiramate, which blocks R-type calcium channels. We establish pathogenic variants in CACNA1E as a cause of DEEs and suggest facilitated R-type calcium currents as a disease mechanism for human epilepsy and developmental disorders
    corecore