560 research outputs found
Planetesimal collisions in binary systems
We study the collisional evolution of km-sized planetesimals in tight binary
star systems to investigate whether accretion towards protoplanets can proceed
despite the strong gravitational perturbations from the secondary star. The
orbits of planetesimals are numerically integrated in two dimensions under the
influence of the two stars and gas drag. The masses and orbits of the
planetesimals are allowed to evolve due to collisions with other planetesimals
and accretion of collisional debris. In addition, the mass in debris can evolve
due to planetesimal-planetesimal collisions and the creation of new
planetesimals. We show that it is possible in principle for km-sized
planetesimals to grow by two orders of magnitude in size if the efficiency of
planetesimal formation is relatively low. We discuss the limitations of our
two-dimensional approach.Comment: 5 pages, 5 figures, accepted for publication in MNRA
Formation of terrestrial planets in close binary systems: the case of Alpha Centauri A
At present the possible existence of planets around the stars of a close
binary system is still matter of debate. Can planetary bodies form in spite of
the strong gravitational perturbations of the companion star? We study in this
paper via numerical simulation the last stage of planetary formation, from
embryos to terrestrial planets in the Alpha Cen system, the prototype of close
binary systems. We find that Earth class planets can grow around Alpha Cen A on
a time-scale of 50 Myr. In some of our numerical models the planets form
directly in the habitable zone of the star in low eccentric orbits. In one
simulation two of the final planets are in a 2:1 mean motion resonance that,
however, becomes unstable after 200 Myr. During the formation process some
planetary embryos fall into the stars possibly altering their metallicity.Comment: accepted for pubblication in A&A, 13 pages, 9 figure
Spectroscopic Observations of New Oort Cloud Comet 2006 VZ13 and Four Other Comets
Spectral data are presented for comets 2006 VZ13 (LINEAR), 2006 K4 (NEAT),
2006 OF2 (Broughton), 2P/Encke, and 93P/Lovas I, obtained with the Cerro-Tololo
Inter-American Observatory 1.5-m telescope in August 2007. Comet 2006 VZ13 is a
new Oort cloud comet and shows strong lines of CN (3880 angstroms), the Swan
band sequence for C_2 (4740, 5160, and 5630 angstroms), C_3 (4056 angstroms),
and other faint species. Lines are also identified in the spectra of the other
comets. Flux measurements of the CN, C_2 (Delta v = +1,0), and C_3 lines are
recorded for each comet and production rates and ratios are derived. When
considering the comets as a group, there is a correlation of C_2 and C_3
production with CN, but there is no conclusive evidence that the production
rate ratios depend on heliocentric distance. The continuum is also measured,
and the dust production and dust-to-gas ratios are calculated. There is a
general trend, for the group of comets, between the dust-to-gas ratio and
heliocentric distance, but it does not depend on dynamical age or class. Comet
2006 VZ13 is determined to be in the carbon-depleted (or Tempel 1 type) class.Comment: 8 pages, 6 figures, 6 tables; Accepted by MNRA
Definition of the σW regulon of Bacillus subtilis in the absence of stress
Bacteria employ extracytoplasmic function (ECF) sigma factors for their responses to environmental stresses. Despite intensive research, the molecular dissection of ECF sigma factor regulons has remained a major challenge due to overlaps in the ECF sigma factor-regulated genes and the stimuli that activate the different ECF sigma factors. Here we have employed tiling arrays to single out the ECF σW regulon of the Gram-positive bacterium Bacillus subtilis from the overlapping ECF σX, σY, and σM regulons. For this purpose, we profiled the transcriptome of a B. subtilis sigW mutant under non-stress conditions to select candidate genes that are strictly σW-regulated. Under these conditions, σW exhibits a basal level of activity. Subsequently, we verified the σW-dependency of candidate genes by comparing their transcript profiles to transcriptome data obtained with the parental B. subtilis strain 168 grown under 104 different conditions, including relevant stress conditions, such as salt shock. In addition, we investigated the transcriptomes of rasP or prsW mutant strains that lack the proteases involved in the degradation of the σW anti-sigma factor RsiW and subsequent activation of the σW-regulon. Taken together, our studies identify 89 genes as being strictly σW-regulated, including several genes for non-coding RNAs. The effects of rasP or prsW mutations on the expression of σW-dependent genes were relatively mild, which implies that σW-dependent transcription under non-stress conditions is not strictly related to RasP and PrsW. Lastly, we show that the pleiotropic phenotype of rasP mutant cells, which have defects in competence development, protein secretion and membrane protein production, is not mirrored in the transcript profile of these cells. This implies that RasP is not only important for transcriptional regulation via σW, but that this membrane protease also exerts other important post-transcriptional regulatory functions
Evidence for a colour dependence in the size distribution of main belt asteroids
We present the results of a project to detect small (~1 km) main-belt
asteroids with the 3.6 meter Canada-France-Hawaii Telescope (CFHT). We observed
in 2 filters (MegaPrime g' and r') in order to compare the results in each
band. Owing to the observational cadence we did not observe the same asteroids
through each filter and thus do not have true colour information. However
strong differences in the size distributions as seen in the two filters point
to a colour-dependence at these sizes, perhaps to be expected in this regime
where asteroid cohesiveness begins to be dominated by physical strength and
composition rather than by gravity. The best fit slopes of the cumulative size
distributions (CSDs) in both filters tend towards lower values for smaller
asteroids, consistent with the results of previous studies. In addition to this
trend, the size distributions seen in the two filters are distinctly different,
with steeper slopes in r' than in g'. Breaking our sample up according to
semimajor axis, the difference between the filters in the inner belt is found
to be somewhat less pronounced than in the middle and outer belt, but the CSD
of those asteroids seen in the r' filter is consistently and significantly
steeper than in g' throughout. The CSD slopes also show variations with
semimajor axis within a given filter, particularly in r'. We conclude that the
size distribution of main belt asteroids is likely to be colour dependent at
kilometer sizes and that this dependence may vary across the belt.Comment: 28 pages, 5 figures, submitted to the Astronomical Journa
Dynamical analysis and constraints for the HD 196885 system
The HD\,196885 system is composed of a binary star and a planet orbiting the
primary. The orbit of the binary is fully constrained by astrometry, but for
the planet the inclination with respect to the plane of the sky and the
longitude of the node are unknown. Here we perform a full analysis of the
HD\,196885 system by exploring the two free parameters of the planet and
choosing different sets of angular variables. We find that the most likely
configurations for the planet is either nearly coplanar orbits (prograde and
retrograde), or highly inclined orbits near the Lidov-Kozai equilibrium points,
i = 44^{\circ} or i = 137^{\circ} . Among coplanar orbits, the retrograde ones
appear to be less chaotic, while for the orbits near the Lidov-Kozai
equilibria, those around \omega= 270^{\circ} are more reliable, where \omega_k
is the argument of pericenter of the planet's orbit with respect to the
binary's orbit.
From the observer's point of view (plane of the sky) stable areas are
restricted to (I1, \Omega_1) \sim (65^{\circ}, 80^{\circ}),
(65^{\circ},260^{\circ}), (115^{\circ},80^{\circ}), and
(115^{\circ},260^{\circ}), where I1 is the inclination of the planet and
\Omega_1 is the longitude of ascending node.Comment: 10 pages, 7 figures. A&A Accepte
First results of the air shower experiment KASCADE
The main goals of the KASCADE (KArlsruhe Shower Core and Array DEtector)
experiment are the determination of the energy spectrum and elemental
composition of the charged cosmic rays in the energy range around the knee at
ca. 5 PeV. Due to the large number of measured observables per single shower a
variety of different approaches are applied to the data, preferably on an
event-by-event basis. First results are presented and the influence of the
high-energy interaction models underlying the analyses is discussed.Comment: 3 pages, 3 figures included, to appear in the TAUP 99 Proceedings,
Nucl. Phys. B (Proc. Suppl.), ed. by M. Froissart, J. Dumarchez and D.
Vignau
A Study of the Orbits of the Logarithmic Potential for Galaxies
The logarithmic potential is of great interest and relevance in the study of
the dynamics of galaxies. Some small corrections to the work of Contopoulos &
Seimenis (1990) who used the method of Prendergast (1982) to find periodic
orbits and bifurcations within such a potential are presented. The solution of
the orbital radial equation for the purely radial logarithmic potential is then
considered using the p-ellipse (precessing ellipse) method pioneered by Struck
(2006). This differential orbital equation is a special case of the generalized
Burgers equation. The apsidal angle is also determined, both numerically as
well as analytically by means of the Lambert W and the Polylogarithm functions.
The use of these functions in computing the gravitational lensing produced by
logarithmic potentials is discussed.Comment: 12 pages, 4 figures. Accepted by MNRAS Sept 6 201
- …
