45 research outputs found
Anomalous f-electron Hall Effect in the Heavy-Fermion System CeTIn (T = Co, Ir, or Rh)
The in-plane Hall coefficient of CeRhIn, CeIrIn, and
CeCoIn and their respective non-magnetic lanthanum analogs are reported
in fields to 90 kOe and at temperatures from 2 K to 325 K. is
negative, field-independent, and dominated by skew-scattering above 50 K
in the Ce compounds. becomes increasingly negative below 50 K
and varies with temperature in a manner that is inconsistent with skew
scattering. Field-dependent measurements show that the low-T anomaly is
strongly suppressed when the applied field is increased to 90 kOe. Measurements
on LaRhIn, LaIrIn, and LaCoIn indicate that the same
anomalous temperature dependence is present in the Hall coefficient of these
non-magnetic analogs, albeit with a reduced amplitude and no field dependence.
Hall angle () measurements find that the ratio
varies as below 20 K for all
three Ce-115 compounds. The Hall angle of the La-115 compounds follow this
T-dependence as well. These data suggest that the electronic-structure
contribution dominates the Hall effect in the 115 compounds, with -electron
and Kondo interactions acting to magnify the influence of the underlying
complex band structure. This is in stark contrast to the situation in most
and heavy-fermion compounds where the normal carrier contribution to the
Hall effect provides only a small, T-independent background to Comment: 23 pages and 8 figure
New model ensemble reveals how forcing uncertainty and model structure alter climate simulated across CMIP generations of the Community Earth System Model
Climate simulation uncertainties arise from internal variability, model structure, and external forcings. Model intercomparisons (such as the Coupled Model Intercomparison Project; CMIP) and single-model large ensembles have provided insight into uncertainty sources. Under the Community Earth System Model (CESM) project, large ensembles have been performed for CESM2 (a CMIP6-era model) and CESM1 (a CMIP5-era model). We refer to these as CESM2-LE and CESM1-LE. The external forcing used in these simulations has changed to be consistent with their CMIP generation. As a result, differences between CESM2-LE and CESM1-LE ensemble means arise from changes in both model structure and forcing. Here we present new ensemble simulations which allow us to separate the influences of these model structural and forcing differences. Our new CESM2 simulations are run with CMIP5 forcings equivalent to those used in the CESM1-LE. We find a strong influence of historical forcing uncertainty due to aerosol effects on simulated climate. For the historical period, forcing drives reduced global warming and ocean heat uptake in CESM2-LE relative to CESM1-LE that is counteracted by the influence of model structure. The influence of the model structure and forcing vary across the globe, and the Arctic exhibits a distinct signal that contrasts with the global mean. For the 21st century, the importance of scenario forcing differences (SSP3–7.0 for CESM2-LE and RCP8.5 for CESM1-LE) is evident. The new simulations presented here allow us to diagnose the influence of model structure on 21st century change, despite large scenario forcing differences, revealing that differences in the meridional distribution of warming are caused by model structure. Feedback analysis reveals that clouds and their impact on shortwave radiation explain many of these structural differences between CESM2 and CESM1. In the Arctic, albedo changes control transient climate evolution differences due to structural differences between CESM2 and CESM1.</p
23rd Century surprises: Long-term dynamics of the climate and carbon cycle under both high and net negative emissions scenarios
Future climate projections from Earth system models (ESMs) typically focus on the timescale of this century. We use a set of four ESMs and one Earth system model of intermediate complexity (EMIC) to explore the dynamics of the Earth’s climate and carbon cycles under contrasting emissions trajectories beyond this century, to the year 2300. The trajectories include a very high emissions, unmitigated fossil-fuel driven scenario, as well as a second mitigation scenario that diverges from the first scenario after 2040 and features an “overshoot”, followed by stabilization of atmospheric CO2 concentrations by means of large net-negative CO2 emissions. In both scenarios, and for all models considered here, the terrestrial system switches from being a net sink to either a neutral state or a net source of carbon, though for different reasons and centered in different geographic regions, depending on both the model and the scenario. The ocean carbon system remains a sink, albeit weakened by climate-carbon feedbacks, in all models under the high emissions scenario, and switches from sink to source in the overshoot scenario. The global mean temperature anomaly generally follows the trajectories of cumulative carbon emissions, except that 23rd-century warming continues after the cessation of carbon emissions in several models, both in the high emissions scenario and in one model in the overshoot scenario. While ocean carbon cycle responses qualitatively agree both in globally integrated and zonal-mean dynamics in both scenarios, the land models qualitatively disagree in zonal-mean dynamics, in the relative roles of vegetation and soil in driving C fluxes, in the response of the sink to CO2, and in the timing of the sink-source transition, particularly in the high emissions scenario. The lack of agreement among land models on the mechanisms and geographic patterns of carbon cycle feedbacks, alongside the potential for lagged physical climate dynamics to cause warming long after CO2 concentrations have stabilized, point to the possibility of surprises in the climate system beyond the 21st century time horizon, even under relatively mitigated global warming scenarios, which should be taken into consideration when setting global climate policy
The Community Land Model version 5 : description of new features, benchmarking, and impact of forcing uncertainty
The Community Land Model (CLM) is the land component of the Community Earth System Model (CESM) and is used in several global and regional modeling systems. In this paper, we introduce model developments included in CLM version 5 (CLM5), which is the default land component for CESM2. We assess an ensemble of simulations, including prescribed and prognostic vegetation state, multiple forcing data sets, and CLM4, CLM4.5, and CLM5, against a range of metrics including from the International Land Model Benchmarking (ILAMBv2) package. CLM5 includes new and updated processes and parameterizations: (1) dynamic land units, (2) updated parameterizations and structure for hydrology and snow (spatially explicit soil depth, dry surface layer, revised groundwater scheme, revised canopy interception and canopy snow processes, updated fresh snow density, simple firn model, and Model for Scale Adaptive River Transport), (3) plant hydraulics and hydraulic redistribution, (4) revised nitrogen cycling (flexible leaf stoichiometry, leaf N optimization for photosynthesis, and carbon costs for plant nitrogen uptake), (5) global crop model with six crop types and time‐evolving irrigated areas and fertilization rates, (6) updated urban building energy, (7) carbon isotopes, and (8) updated stomatal physiology. New optional features include demographically structured dynamic vegetation model (Functionally Assembled Terrestrial Ecosystem Simulator), ozone damage to plants, and fire trace gas emissions coupling to the atmosphere. Conclusive establishment of improvement or degradation of individual variables or metrics is challenged by forcing uncertainty, parametric uncertainty, and model structural complexity, but the multivariate metrics presented here suggest a general broad improvement from CLM4 to CLM5
Minimally invasive surgery and cancer: controversies part 1
Perhaps there is no more important issue in the care of surgical patients than the appropriate use of minimally invasive surgery (MIS) for patients with cancer. Important advances in surgical technique have an impact on early perioperative morbidity, length of hospital stay, pain management, and quality of life issues, as clearly proved with MIS. However, for oncology patients, historically, the most important clinical questions have been answered in the context of prospective randomized trials. Important considerations for MIS and cancer have been addressed, such as what are the important immunologic consequences of MIS versus open surgery and what is the role of laparoscopy in the staging of gastrointestinal cancers? This review article discusses many of the key controversies in the minimally invasive treatment of cancer using the pro–con debate format
Recommended from our members
Parametric Controls on Vegetation Responses to Biogeochemical Forcing in the CLM5
Future projections of land carbon uptake in Earth System Models are affected by land surface model responses to both CO2 and nitrogen fertilization. The Community Land Model, Version 5 (CLM5), contains a suite of modifications to carbon and nitrogen cycle representation. Globally, the CLM5 has a larger CO2 response and smaller nitrogen response than its predecessors. To improve our understanding of the controls over the fertilization responses of the new model, we assess sensitivity to eight parameters pertinent to the cycling of carbon and nitrogen by vegetation, both under present‐day conditions and with CO2 and nitrogen fertilization. The impact of fertilization varies with both model parameters and with the balance of limiting factors (water, temperature, nutrients, and light) in the pre‐fertilization model state. The model parameters that impact the pre‐fertilization state are in general not the same as those that control fertilization responses, meaning that goodness of fit to present‐day conditions does not necessarily imply a constraint on future transient projections. Where pre‐fertilization state has low leaf area, fertilization‐induced increases in leaf production amplify the model response to the initial fertilization via further increases in photosynthesis. Model responses to CO2 and N fertilization are strongly impacted by how much plant communities can increase their rates of nitrogen fixation and also directly affected by costs of N extraction from soil and stoichiometric flexibility. Illustration of how parametric flexibility impacts model outputs should help inform the interpretation of carbon‐climate feedbacks estimated by in fully coupled Earth system model simulations. Key Points The Community Land Model, Version 5, contains numerous modifications to representations of the vegetation carbon and nitrogen cycles The control state, and responses to CO2 and nitrogen, are sensitive to parameter choice, and to baseline water and nitrogen limitation Parameters controlling nitrogen fixation rates dominate fertilization responses, highlighting a need for greater scrutiny of this process</p