1,317 research outputs found
Charged Particle with Magnetic Moment in the Aharonov-Bohm Potential
We considered a charged quantum mechanical particle with spin
and gyromagnetic ratio in the field af a magnetic string. Whereas the
interaction of the charge with the string is the well kown Aharonov-Bohm effect
and the contribution of magnetic moment associated with the spin in the case
is known to yield an additional scattering and zero modes (one for each
flux quantum), an anomaly of the magnetic moment (i.e. ) leads to bound
states. We considered two methods for treating the case . \\ The first is
the method of self adjoint extension of the corresponding Hamilton operator. It
yields one bound state as well as additional scattering. In the second we
consider three exactly solvable models for finite flux tubes and take the limit
of shrinking its radius to zero. For finite radius, there are bound
states ( is the number of flux quanta in the tube).\\ For the bound
state energies tend to infinity so that this limit is not physical unless along with . Thereby only for fluxes less than unity the results of
the method of self adjoint extension are reproduced whereas for larger fluxes
bound states exist and we conclude that this method is not applicable.\\ We
discuss the physically interesting case of small but finite radius whereby the
natural scale is given by the anomaly of the magnetic moment of the electron
.Comment: 16 pages, Latex, NTZ-93-0
Tunable microwave signal generator with an optically-injected 1310nm QD-DFB laser
Tunable microwave signal generation with frequencies ranging from below 1 GHz to values over 40 GHz is demonstrated experimentally with a 1310nm Quantum Dot (QD) Distributed-Feedback (DFB) laser. Microwave signal generation is achieved using the period 1 dynamics induced in the QD DFB under optical injection. Continuous tuning in the positive detuning frequency range of the quantum dot's unique stability map is demonstrated. The simplicity of the experimental configuration offers promise for novel uses of these nanostructure lasers in Radio-over-Fiber (RoF) applications and future mobile networks. © 2013 Optical Society of America
MoDSS - a compact Mobile Decay Spectroscopy Set-up for the investigation of heavy and superheavy nuclei after separation
International audienc
Frequency locking of modulated waves
We consider the behavior of a modulated wave solution to an
-equivariant autonomous system of differential equations under an
external forcing of modulated wave type. The modulation frequency of the
forcing is assumed to be close to the modulation frequency of the modulated
wave solution, while the wave frequency of the forcing is supposed to be far
from that of the modulated wave solution. We describe the domain in the
three-dimensional control parameter space (of frequencies and amplitude of the
forcing) where stable locking of the modulation frequencies of the forcing and
the modulated wave solution occurs.
Our system is a simplest case scenario for the behavior of self-pulsating
lasers under the influence of external periodically modulated optical signals
VHE Gamma Rays from PKS 2155-304
The close X-ray selected BL Lac PKS 2155-304 has been observed using the
University of Durham Mark 6 very high energy (VHE) gamma ray telescope during
1996 September/October/November and 1997 October/November. VHE gamma rays with
energy > 300 GeV were detected from this object with a time-averaged integral
flux of (4.2 +/- 0.7 (stat) +/- 2.0 (sys)) x 10^(-11) per cm2 per s. There is
evidence for VHE gamma ray emission during our observations in 1996 September
and 1997 October/November, with the strongest emission being detected in 1997
November, when the object was producing the largest flux ever recorded in
high-energy X-rays and was detected in > 100 MeV gamma-rays. The VHE and X-ray
fluxes show evidence of a correlation.Comment: 14 pages, 6 figures, accepted for publication in Ap.
High-sensitivity troponin I concentrations are a marker of an advanced hypertrophic response and adverse outcomes in patients with aortic stenosis
Aims:
High-sensitivity cardiac troponin I (cTnI) assays hold promise in detecting the transition from hypertrophy to heart failure in aortic stenosis. We sought to investigate the mechanism for troponin release in patients with aortic stenosis and whether plasma cTnI concentrations are associated with long-term outcome.
Methods and results:
Plasma cTnI concentrations were measured in two patient cohorts using a high-sensitivity assay. First, in the Mechanism Cohort, 122 patients with aortic stenosis (median age 71, 67% male, aortic valve area 1.0 ± 0.4 cm2) underwent cardiovascular magnetic resonance and echocardiography to assess left ventricular (LV) myocardial mass, function, and fibrosis. The indexed LV mass and measures of replacement fibrosis (late gadolinium enhancement) were associated with cTnI concentrations independent of age, sex, coronary artery disease, aortic stenosis severity, and diastolic function. In the separate Outcome Cohort, 131 patients originally recruited into the Scottish Aortic Stenosis and Lipid Lowering Trial, Impact of REgression (SALTIRE) study, had long-term follow-up for the occurrence of aortic valve replacement (AVR) and cardiovascular deaths. Over a median follow-up of 10.6 years (1178 patient-years), 24 patients died from a cardiovascular cause and 60 patients had an AVR. Plasma cTnI concentrations were associated with AVR or cardiovascular death HR 1.77 (95% CI, 1.22 to 2.55) independent of age, sex, systolic ejection fraction, and aortic stenosis severity.
Conclusions:
In patients with aortic stenosis, plasma cTnI concentration is associated with advanced hypertrophy and replacement myocardial fibrosis as well as AVR or cardiovascular death
Hallermann-Streiff Syndrome: No Evidence for a Link to Laminopathies
Hallermann-Streiff syndrome (HSS) is a rare inherited disorder characterized by malformations of the cranium and facial bones, congenital cataracts, microphthalmia, skin atrophy, hypotrichosis, proportionate short stature, teeth abnormalities, and a typical facial appearance with prominent forehead, small pointed nose, and micrognathia. The genetic cause of this developmental disorder is presently unknown. Here we describe 8 new patients with a phenotype of HSS. Individuals with HSS present with clinical features overlapping with some progeroid syndromes that belong to the laminopathies, such as Hutchinson-Gilford progeria syndrome (HGPS) and mandibuloacral dysplasia (MAD). HGPS is caused by de novo point mutations in the LMNA gene, coding for the nuclear lamina proteins lamin A and C. MAD with type A and B lipodystrophy are recessive disorders resulting from mutations in LMNA and ZMPSTE24 , respectively. ZMPSTE24 in addition to ICMT encode proteins involved in posttranslational processing of lamin A. We hypothesized that HSS is an allelic disorder to HGPS and MAD. As the nuclear shape is often irregular in patients with LMNA mutations, we first analyzed the nuclear morphology in skin fibroblasts of patients with HSS, but could not identify any abnormality. Sequencing of the genes LMNA, ZMPSTE24 and ICMT in the 8 patients with HSS revealed the heterozygous missense mutation c.1930C>T (p.R644C) in LMNA in 1 female. Extreme phenotypic diversity and low penetrance have been associated with the p.R644C mutation. In ZMPSTE24 and ICMT , no pathogenic sequence change was detected in patients with HSS. Together, we found no evidence that HSS is another laminopathy
Description and dosimetric verification of the PEREGRINE Monte Carlo dose calculation system for photon beams incident on a water phantom
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134919/1/mp1551.pd
Pontocerebellar hypoplasia due to bi-allelic variants in MINPP1
Pontocerebellar hypoplasia (PCH) describes a group of rare heterogeneous neurodegenerative diseases with prenatal onset. Here we describe eight children with PCH from four unrelated families harboring the homozygous MINPP1 (NM_004897.4) variants; c.75_94del, p.(Leu27Argfs*39), c.851 C > A, p.(Ala284Asp), c.1210 C > T, p.(Arg404*), and c.992 T > G, p.(Ile331Ser). The homozygous p.(Leu27Argfs*39) change is predicted to result in a complete absence of MINPP1. The p.(Arg404*) would likely lead to a nonsense mediated decay, or alternatively, a loss of several secondary structure elements impairing protein folding. The missense p.(Ala284Asp) affects a buried, hydrophobic residue within the globular domain. The introduction of aspartic acid is energetically highly unfavorable and therefore predicted to cause a significant reduction in protein stability. The missense p.(Ile331Ser) affects the tight hydrophobic interactions of the isoleucine by the disruption of the polar side chain of serine, destabilizing the structure of MINPP1. The overlap of the above-mentioned genotypes and phenotypes is highly improbable by chance. MINPP1 is the only enzyme that hydrolyses inositol phosphates in the endoplasmic reticulum lumen and several studies support its role in stress induced apoptosis. The pathomechanism explaining the disease mechanism remains unknown, however several others genes of the inositol phosphatase metabolism (e.g., INPP5K, FIG4, INPP5E, ITPR1) are correlated with phenotypes of neurodevelopmental disorders. Taken together, we present MINPP1 as a novel autosomal recessive pontocerebellar hypoplasia gene
High- Q Magnetic Levitation and Control of Superconducting Microspheres at Millikelvin Temperatures
We report the levitation of a superconducting lead-tin sphere with 100 μm diameter (corresponding to a mass of 5.6 μg) in a static magnetic trap formed by two coils in an anti-Helmholtz configuration, with adjustable resonance frequencies up to 240 Hz. The center-of-mass motion of the sphere is monitored magnetically using a dc superconducting quantum interference device as well as optically and exhibits quality factors of up to 2.6
7107. We also demonstrate 3D magnetic feedback control of the motion of the sphere. The setup is housed in a dilution refrigerator operating at 15 mK. By implementing a cryogenic vibration isolation system, we can attenuate environmental vibrations at 200 Hz by approximately 7 orders of magnitude. The combination of low temperature, large mass, and high quality factor provides a promising platform for testing quantum physics in previously unexplored regimes with high mass and long coherence times
- …