15 research outputs found

    The potential influence of Asian and African mineral dust on ice, mixed-phase and liquid water clouds

    Get PDF
    This modelling study explores the availability of mineral dust particles as ice nuclei for interactions with ice, mixed-phase and liquid water clouds, also tracking the particles' history of cloud-processing. We performed 61 320 one-week forward trajectory calculations originating near the surface of major dust emitting regions in Africa and Asia using high-resolution meteorological analysis fields for the year 2007. Dust-bearing trajectories were assumed to be those coinciding with known dust emission seasons, without explicitly modelling dust emission and deposition processes. We found that dust emissions from Asian deserts lead to a higher potential for interactions with high ice clouds, despite being the climatologically much smaller dust emission source. This is due to Asian regions experiencing significantly more ascent than African regions, with strongest ascent in the Asian Taklimakan desert at ~25%, ~40% and 10% of trajectories ascending to 300 hPa in spring, summer and fall, respectively. The specific humidity at each trajectory's starting point was transported in a Lagrangian manner and relative humidities with respect to water and ice were calculated in 6-h steps downstream, allowing us to estimate the formation of liquid, mixed-phase and ice clouds. Downstream of the investigated dust sources, practically none of the simulated air parcels reached conditions of homogeneous ice nucleation (<i>T</i>≲−40 °C) along trajectories that have not experienced water saturation first. By far the largest fraction of cloud forming trajectories entered conditions of mixed-phase clouds, where mineral dust will potentially exert the biggest influence. The majority of trajectories also passed through atmospheric regions supersaturated with respect to ice but subsaturated with respect to water, where so-called "warm ice clouds" (<i>T</i>≳−40 °C) theoretically may form prior to supercooled water or mixed-phase clouds. The importance of "warm ice clouds" and the general influence of dust in the mixed-phase cloud region are highly uncertain due to both a considerable scatter in recent laboratory data from ice nucleation experiments, which we briefly review in this work, and due to uncertainties in sub-grid scale vertical transport processes unresolved by the present trajectory analysis. For "classical" cirrus-forming temperatures (<i>T</i>≲−40 °C), our results show that only mineral dust ice nuclei that underwent mixed-phase cloud-processing, most likely acquiring coatings of organic or inorganic material, are likely to be relevant. While the potential paucity of deposition ice nuclei shown in this work dimishes the possibility of deposition nucleation, the absence of liquid water droplets at <i>T</i>≲−40 °C makes the less explored contact freezing mechanism (involving droplet collisions with bare ice nuclei) highly inefficient. These factors together indicate the necessity of further systematic studies of immersion mode ice nucleation on mineral dust suspended in atmospherically relevant coatings

    Development of a selftriggered high counting rate ASIC for readout of 2D gas microstrip neutron detectors

    Get PDF
    In the frame of the DETNI project a 32-channel ASIC suitable for readout of a novel 2D thermal neutron detector based on a hybrid low-pressure Micro-Strip Gas Chamber with solid 157Gd converter has been developed. Each channel delivers position information, a fast time stamp of 2 ns resolution and the signal amplitude (called energy below). The time stamp is used for correlating the signals from X and Y strips while the amplitude is used for finding the center of gravity of a cluster of strips. The timing and energy information are stored in derandomizing buffers and read out via token ring architecture

    Overview of IFMIF-DONES diagnostics: Requirements and techniques

    Get PDF
    The IFMIF-DONES Facility is a unique first-class scientific infrastructure whose construction is foreseen in Granada, Spain, in the coming years. Strong integration efforts are being made at the current project phase aiming at harmonizing the ongoing design of the different and complex Systems of the facility. The consolidation of the Diagnostics and Instrumentation, transversal across many of them, is a key element of this purpose. A top-down strategy is proposed for a systematic Diagnostics Review and Requirement definition, putting emphasis in the one-of-a-kind instruments necessary by the operational particularities of some of the Systems, as well as to the harsh environment that they shall survive. In addition, other transversal aspects such as the ones related to Safety and Machine Protection and their respective requirements shall be also considered. The goal is therefore to advance further and solidly in the respective designs, identify problems in advance, and steer the Diagnostics development and validation campaigns that will be required. The present work provides an overview of this integration strategy as well as a description of some of the most challenging Diagnostics and Instruments within the facility, including several proposed techniques currently under study

    Measuring X-ray and neutron spectra with gas detectors, from models to measurements

    No full text
    International audienceIn future fusion reactors, the number of diagnostics might be extremely limited mainly due to the breeding blanket that will need to be maximized. Radiation spectra measurements will certainly remain among the most important ones. Indeed, essential plasma parameters can be inferred from the neutron spectrum measurement: ion temperature from thermal broadening, fuel ion ratio and rotation velocity, while several complementary parameters can be deduced from X-ray spectrum measurements like magnetic axis, electron temperature, impurity concentration and spatial distribution after tomographic inversion, fast electrons distribution, etc. Despite being extremely rich in information, the access to continuous spectral measurements is nevertheless a technical challenge, in particular if the objective is to make use of these measurements for real-time plasma control. This contribution will report on recent efforts dedicated to X-ray and neutron measurements using gas detectors of different nature (GEM, LVIC) in laboratories and on the WEST tokamak. Synthetic diagnostics specially developed for this purpose have been used to design the different detectors, but also to validate the obtained measurements and extrapolate to some application on the ITER tokamak

    Saharan dust and heterogeneous ice formation : Eleven years of cloud observations at a central European EARLINET site

    No full text
    More than 2300 observed cloud layers were analyzed to investigate the impact of aged Saharan dust on heterogeneous ice formation. The observations were performed with a polarization/Raman lidar at the European Aerosol Research Lidar Network site of Leipzig, Germany (51.3 degrees N, 12.4 degrees E) from February 1997 to June 2008. The statistical analysis is based on lidar-derived information on cloud phase (liquid water, mixed phase, ice cloud) and cloud top height, cloud top temperature, and vertical profiles of dust mass concentration calculated with the Dust Regional Atmospheric Modeling system. Compared to dust-free air masses, a significantly higher amount of ice-containing clouds (25%-30% more) was observed for cloud top temperatures from -10 degrees C to -20 degrees C in air masses that contained mineral dust. The midlatitude lidar study is compared with our SAMUM lidar study of tropical stratiform clouds at Cape Verde in the winter of 2008. The comparison reveals that heterogeneous ice formation is much stronger over central Europe and starts at higher temperatures than over the tropical station. Possible reasons for the large difference are discussed.Peer reviewe
    corecore