2,822 research outputs found

    Process, Ideology, and Willingness to Pay for Reducing Childhood Poverty

    Get PDF
    We investigated the perceived value of government programs on early-childhood development as a means of reducing childhood poverty. We incorporated preferences for the process as well as the outcome by developing two stated-preference survey instruments. One survey directly elicited respondents’ willingness to pay specifically for high-quality, intensive, early-childhood development programs at federal and state levels. A second survey elicited respondents’ preferences for increasing or decreasing taxes and reallocating expenditures between other government programs and early-childhood programs. We found that respondents cared greatly about how childhood poverty was reduced, not just reducing poverty per se. The perceived effectiveness of a program and ideological perspective were found to be important determinants of preferences for a poverty-reduction program. Respondents across all groups, including conservatives and respondents who perceived the effectiveness of early-childhood programs to be low, were not in favor of reducing the early-childhood program.</jats:p

    A role for fast rhythmic bursting neurons in cortical gamma oscillations in vitro

    Get PDF
    Basic cellular and network mechanisms underlying gamma frequency oscillations (30–80 Hz) have been well characterized in the hippocampus and associated structures. In these regions, gamma rhythms are seen as an emergent property of networks of principal cells and fast-spiking interneurons. In contrast, in the neocortex a number of elegant studies have shown that specific types of principal neuron exist that are capable of generating powerful gamma frequency outputs on the basis of their intrinsic conductances alone. These fast rhythmic bursting (FRB) neurons (sometimes referred to as "chattering" cells) are activated by sensory stimuli and generate multiple action potentials per gamma period. Here, we demonstrate that FRB neurons may function by providing a large-scale input to an axon plexus consisting of gap-junctionally connected axons from both FRB neurons and their anatomically similar counterparts regular spiking neurons. The resulting network gamma oscillation shares all of the properties of gamma oscillations generated in the hippocampus but with the additional critical dependence on multiple spiking in FRB cells

    GABA-enhanced collective behavior in neuronal axons underlies persistent gamma-frequency oscillations

    Get PDF
    Gamma (30–80 Hz) oscillations occur in mammalian electroencephalogram in a manner that indicates cognitive relevance. In vitro models of gamma oscillations demonstrate two forms of oscillation: one occurring transiently and driven by discrete afferent input and the second occurring persistently in response to activation of excitatory metabotropic receptors. The mechanism underlying persistent gamma oscillations has been suggested to involve gap-junctional communication between axons of principal neurons, but the precise relationship between this neuronal activity and the gamma oscillation has remained elusive. Here we demonstrate that gamma oscillations coexist with high-frequency oscillations (>90 Hz). High-frequency oscillations can be generated in the axonal plexus even when it is physically isolated from pyramidal cell bodies. They were enhanced in networks by nonsomatic -aminobutyric acid type A (GABAA) receptor activation, were modulated by perisomatic GABAA receptor-mediated synaptic input to principal cells, and provided the phasic input to interneurons required to generate persistent gamma-frequency oscillations. The data suggest that high-frequency oscillations occurred as a consequence of random activity within the axonal plexus. Interneurons provide a mechanism by which this random activity is both amplified and organized into a coherent network rhythm

    Seizure initiation in infantile spasms vs. focal seizures: proposed common cellular mechanisms

    Get PDF
    Infantile spasms (IS) and seizures with focal onset have different clinical expressions, even when electroencephalography (EEG) associated with IS has some degree of focality. Oddly, identical pathology (with, however, age-dependent expression) can lead to IS in one patient vs. focal seizures in another or even in the same, albeit older, patient. We therefore investigated whether the cellular mechanisms underlying seizure initiation are similar in the two instances: spasms vs. focal. We noted that in-common EEG features can include (i) a background of waves at alpha to delta frequencies; (ii) a period of flattening, lasting about a second or more – the electrodecrement (ED); and (iii) often an interval of very fast oscillations (VFO; ~70 Hz or faster) preceding, or at the beginning of, the ED. With IS, VFO temporally coincides with the motor spasm. What is different between the two conditions is this: with IS, the ED reverts to recurring slow waves, as occurring before the ED, whereas with focal seizures the ED instead evolves into an electrographic seizure, containing high-amplitude synchronized bursts, having superimposed VFO. We used in vitro data to help understand these patterns, as such data suggest cellular mechanisms for delta waves, for VFO, for seizure-related burst complexes containing VFO, and, more recently, for the ED. We propose a unifying mechanistic hypothesis – emphasizing the importance of brain pH – to explain the commonalities and differences of EEG signals in IS versus focal seizures
    • …
    corecore