337 research outputs found

    The mineral nutrients in blue-grass

    Get PDF

    The minimum protein requirement for growing dairy hiefers

    Get PDF
    Publication authorized January 10, 1924.Digitized 2007 AES.Includes bibliographical references (pages 154-155)

    Using estrus detection patches to optimally time insemination improved pregnancy risk in suckled beef cows enrolled in a fixed-time artificial insemination program

    Get PDF
    Citation: Hill, S. L., Grieger, D. M., Olson, K. C., Jaeger, J. R., Dahlen, C. R., Bridges, G. A., . . . Stevenson, J. S. (2016). Using estrus detection patches to optimally time insemination improved pregnancy risk in suckled beef cows enrolled in a fixed-time artificial insemination program. Journal of Animal Science, 94(9), 3703-3710. doi:10.2527/jas2016-0469A multilocation study examined pregnancy risk (PR) after delaying AI in suckled beef cows from 60 to 75 h when estrus had not been detected by 60 h in response to a 7-d CO-Synch + progesterone insert (CIDR) timed AI (TAI) program (d-7: CIDR insert concurrent with an injection of GnRH; d 0: PGF(2 alpha) injection and removal of CIDR insert; and GnRH injection at TAI [ 60 or 75 h after CIDR removal]). A total of 1,611 suckled beef cows at 15 locations in 9 states (CO, IL, KS, MN, MS, MT, ND, SD, and VA) were enrolled. Before applying the fixed-time AI program, BCS was assessed, and blood samples were collected. Estrus was defined to have occurred when an estrus detection patch was >50% colored (activated). Pregnancy was determined 35 d after AI via transrectal ultrasound. Cows (n = 746) detected in estrus by 60 h (46.3%) after CIDR removal were inseminated and treated with GnRH at AI (Control). Remaining nonestrous cows were allocated within location to 3 treatments on the basis of parity and days postpartum: 1) GnRH injection and AI at 60 h (early-early = EE; n = 292), 2) GnRH injection at 60 h and AI at 75 h (early-delayed = ED; n = 282), or 3) GnRH injection and AI at 75 h (delayed-delayed = DD; n = 291). Control cows had a greater (P < 0.01) PR (64.2%) than other treatments (EE = 41.7%, ED = 52.8%, DD = 50.0%). Use of estrus detection patches to delay AI in cows not in estrus by 60 h after CIDR insert removal (ED and DD treatments) increased (P < 0.05) PR to TAI when compared with cows in the EE treatment. More (P < 0.001) cows that showed estrus by 60 h conceived to AI at 60 h than those not showing estrus (64.2% vs. 48.1%). Approximately half (49.2%) of the cows not in estrus by 60 h had activated patches by 75 h, resulting in a greater (P < 0.05) PR than their nonestrous herd mates in the EE (46.1% vs. 34.5%), ED (64.2% vs. 39.2%), and DD (64.8% vs. 31.5%) treatments, respectively. Overall, cows showing estrus by 75 h (72.7%) had greater (P < 0.001) PR to AI (61.3% vs. 37.9%) than cows not showing estrus. Use of estrus detection patches to allow for a delayed AI in cows not in estrus by 60 h after removal of the CIDR insert improved PR to TAI by optimizing the timing of the AI in those cows

    SNAPSHOT USA 2019: a coordinated national camera trap survey of the United States

    Get PDF
    With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August-24 November of 2019). We sampled wildlife at 1,509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the United States. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as will future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication

    SNAPSHOT USA 2020: A second coordinated national camera trap survey of the United States during the COVID-19 pandemic

    Get PDF
    Managing wildlife populations in the face of global change requires regular data on the abundance and distribution of wild animals, but acquiring these over appropriate spatial scales in a sustainable way has proven challenging. Here we present the data from Snapshot USA 2020, a second annual national mammal survey of the USA. This project involved 152 scientists setting camera traps in a standardized protocol at 1485 locations across 103 arrays in 43 states for a total of 52,710 trap-nights of survey effort. Most (58) of these arrays were also sampled during the same months (September and October) in 2019, providing a direct comparison of animal populations in 2 years that includes data from both during and before the COVID-19 pandemic. All data were managed by the eMammal system, with all species identifications checked by at least two reviewers. In total, we recorded 117,415 detections of 78 species of wild mammals, 9236 detections of at least 43 species of birds, 15,851 detections of six domestic animals and 23,825 detections of humans or their vehicles. Spatial differences across arrays explained more variation in the relative abundance than temporal variation across years for all 38 species modeled, although there are examples of significant site-level differences among years for many species. Temporal results show how species allocate their time and can be used to study species interactions, including between humans and wildlife. These data provide a snapshot of the mammal community of the USA for 2020 and will be useful for exploring the drivers of spatial and temporal changes in relative abundance and distribution, and the impacts of species interactions on daily activity patterns. There are no copyright restrictions, and please cite this paper when using these data, or a subset of these data, for publication

    Wrong Turn in Cyberspace: Using ICANN to Route Around the APA and the Constitution

    Get PDF
    The Internet relies on an underlying centralized hierarchy built into the domain name system (DNS) to control the routing for the vast majority of Internet traffic. At its heart is a single data file, known as the root. Control of the root provides singular power in cyberspace. This Article first describes how the United States government found itself in control of the root. It then describes how, in an attempt to meet concerns that the United States could so dominate an Internet chokepoint, the U. S. Department of Commerce (DoC) summoned into being the Internet Corporation for Assigned Names and Numbers (ICANN), a formally private nonprofit California corporation. DoC then signed contracts with ICANN in order to clothe it with most of the U. S. government\u27s power over the DNS, and convinced other parties to recognize ICANN\u27s authority. ICANN then took regulatory actions that the U. S. Department of Commerce was unable or unwilling to make itself, including the imposition on all registrants of Internet addresses of an idiosyncratic set of arbitration rules and procedures that benefit third-party trademark holders. Professor Froomkin then argues that the use of ICANN to regulate in the stead of an executive agency violates fundamental values and policies designed to ensure democratic control over the use of government power, and sets a precedent that risks being expanded into other regulatory activities. He argues that DoC\u27s use of ICANN to make rules either violates the APA\u27s requirement for notice and comment in rulemaking and judicial review, or it violates the Constitution\u27s nondelegation doctrine. Professor Froomkin reviews possible alternatives to ICANN, and ultimately proposes a decentralized structure in which the namespace of the DNS is spread out over a transnational group of policy partners with DoC

    A preliminary fishery quality index for Portuguese streams

    Get PDF
    There is a need to quantify the multivariate quality of a recreational fishery at the site scale to better communicate the relative quality among sites to the public and anglers. Borrowing on the general approach of multimetric indices of biotic integrity (IBIs), we developed fishery quality indices (FQIs) from species quality indices (SQIs) based on measures of fish abundance and size structure for northern and central Portuguese streams. Our FQIs showed regional patterns indicating a range in fishery quality. Higher coldwater FQI scores were mostly found in the northwestern (Minho and Lima), northeastern Douro, and northern Tagus basins. Higher warmwater FQI scores occurred in the eastern Tagus basin. The species that contributed the most to warmwater FQI scores were largemouth bass Micropterus salmoides, pumpkinseed Lepomis gibbosus, the cyprinid Luciobarbus bocagei, chubs Squalius carolitertii and S. pyrenaicus, and nases Pseudochondrostoma duriense and P. polylepis. The chubs, nases, and brown trout Salmo trutta contributed the most to coldwater FQI scores. As expected, our indices were correlated with river size and with disturbance at the catchment, segment, and site scales. Regression models for separate coldwater and warmwater FQIs were stronger than those for the individual SQIs and for an all-site FQI. The correlation was positive between the coldwater FQI and a coldwater IBI but negative between the warmwater FQI and warmwater IBIs. The proposed FQIs offer a quantitative approach for assessing relative fishery quality among sites and for making regional assessments given an appropriate study design. The component SQIs and SQI metrics of the FQIs can be disassociated to determine the population and species characteristics most affected by various environmental variables
    corecore