4,365 research outputs found

    Dynamical Masses of Young Star Clusters in NGC 4038/4039

    Get PDF
    In order to estimate the masses of the compact, young star clusters in the merging galaxy pair, NGC 4038/4039 (``the Antennae''), we have obtained medium and high resolution spectroscopy using ISAAC on VLT-UT1 and UVES on VLT-UT2 of five such clusters. The velocity dispersions were estimated using the stellar absorption features of CO at 2.29 microns and metal absorption lines at around 8500 \AA, including lines of the Calcium Triplet. The size scales and light profiles were measured from HST images. From these data and assuming Virial equilibrium, we estimated the masses of five clusters. The resulting masses range from 6.5 x 10^5 to 4.7 x 10^6 M_sun. These masses are large, factor of a few to more than 10 larger than the typical mass of a globular cluster in the Milky Way. The mass-to-light ratios for these clusters in the V- and K-bands in comparison with stellar synthesis models suggest that to first order the IMF slopes are approximately consistent with Salpeter for a mass range of 0.1 to 100 M_sun. However, the clusters show a significant range of possible IMF slopes or lower mass cut-offs and that these variations may correlate with the interstellar environment of the cluster. Comparison with the results of Fokker-Planck simulations of compact clusters with properties similar to the clusters studied here, suggest that they are likely to be long-lived and may lose a substantial fraction of their total mass. This mass loss would make the star clusters obtain masses which are comparable to the typical mass of a globular cluster.Comment: 16 pages, 12 figures, A&A accepte

    Banco de sementes de floresta tropical Ăşmida no municĂ­pio de Moju, PA.

    Get PDF
    bitstream/item/57772/1/CPATU-PA185.pd

    External Mass Accumulation onto Core Potentials: Implications for Star Clusters, Galaxies and Galaxy Clusters

    Full text link
    Accretion studies have been focused on the flow around bodies with point mass gravitational potentials, but few general results are available for non-point mass distributions. Here, we study the accretion flow onto non-divergent, core potentials moving through a background medium. We use Plummer and Hernquist potentials as examples to study gas accretion onto star clusters, dwarf and large galaxy halos and galaxy clusters in a variety of astrophysical environments. The general conditions required for a core potential to collectively accrete large quantities of gas from the external medium are derived using both simulations and analytic results. The consequences of large mass accumulation in galaxy nuclei, dwarf galaxies and star clusters are twofold. First, if the gas cools effectively star formation can be triggered, generating new stellar members in the system. Second, if the collective potential of the system is able to alter the ambient gas properties before the gas is accreted onto the individual core members, the augmented mass supply rates could significantly alter the state of the various accreting stellar populations and result in an enhanced central black hole accretion luminosity.Comment: 24 pages, 15 figures, accepted to Ap

    Circadian Clock Synchronization of the Cell Cycle in Zebrafish Occurs through a Gating Mechanism Rather Than a Period-phase Locking Process

    Get PDF
    Studies from a number of model systems have shown that the circadian clock controls expression of key cell cycle checkpoints, thus providing permissive or inhibitory windows in which specific cell cycle events can occur. However, a major question remains: Is the clock actually regulating the cell cycle through such a gating mechanism or, alternatively, is there a coupling process that controls the speed of cell cycle progression? Using our light-responsive zebrafish cell lines, we address this issue directly by synchronizing the cell cycle in culture simply by changing the entraining light-dark (LD) cycle in the incubator without the need for pharmacological intervention. Our results show that the cell cycle rapidly reentrains to a shifted LD cycle within 36 h, with changes in p21 expression and subsequent S phase timing occurring within the first few hours of resetting. Reentrainment of mitosis appears to lag S phase resetting by 1 circadian cycle. The range of entrainment of the zebrafish clock to differing LD cycles is large, from 16 to 32 hour periods. We exploited this feature to explore cell cycle entrainment at both the population and single cell levels. At the population level, cell cycle length is shortened or lengthened under corresponding T-cycles, suggesting that a 1:1 coupling mechanism is capable of either speeding up or slowing down the cell cycle. However, analysis at the single cell level reveals that this, in fact, is not true and that a gating mechanism is the fundamental method of timed cell cycle regulation in zebrafish. Cell cycle length at the single cell level is virtually unaltered with varying T-cycles

    Spectroscopic Constraints on the Form of the Stellar Cluster Mass Function

    Get PDF
    This contribution addresses the question of whether the initial cluster mass function (ICMF) has a fundamental limit (or truncation) at high masses. The shape of the ICMF at high masses can be studied using the most massive young (<10 Myr) clusters, however this has proven difficult due to low-number statistics. In this contribution we use an alternative method based on the luminosities of the brightest clusters, combined with their ages. If a truncation is present, a generic prediction (nearly independent of the cluster disruption law adopted) is that the median age of bright clusters should be younger than that of fainter clusters. In the case of an non-truncated ICMF, the median age should be independent of cluster luminosity. Here, we present optical spectroscopy of twelve young stellar clusters in the face-on spiral galaxy NGC 2997. The spectra are used to estimate the age of each cluster, and the brightness of the clusters is taken from the literature. The observations are compared with the model expectations of Larsen (2009) for various ICMF forms and both mass dependent and mass independent cluster disruption. While there exists some degeneracy between the truncation mass and the amount of mass independent disruption, the observations favour a truncated ICMF. For low or modest amounts of mass independent disruption, a truncation mass of 5-6*10^5 Msun is estimated, consistent with previous determinations. Additionally, we investigate possible truncations in the ICMF in the spiral galaxy M83, the interacting Antennae galaxies, and the collection of spiral and dwarf galaxies present in Larsen (2009) based on photometric catalogues taken from the literature, and find that all catalogues are consistent with having a (environmentally dependent) truncation in the cluster mass functions.Comment: 6 pages, 5 figures, in press, A&A Research Note

    Secular Evolution of Galaxy Morphologies

    Get PDF
    Today we have numerous evidences that spirals evolve dynamically through various secular or episodic processes, such as bar formation and destruction, bulge growth and mergers, sometimes over much shorter periods than the standard galaxy age of 10-15 Gyr. This, coupled to the known properties of the Hubble sequence, leads to a unique sense of evolution: from Sm to Sa. Linking this to the known mass components provides new indications on the nature of dark matter in galaxies. The existence of large amounts of yet undetected dark gas appears as the most natural option. Bounds on the amount of dark stars can be given since their formation is mostly irreversible and requires obviously a same amount of gas.Comment: 8 pages, Latex2e, crckapb.sty macros, 1 Postscript figure, replaced with TeX source; To be published in the proceeedings of the "Dust-Morphology" conference, Johannesburg, 22-26 January, 1996, D. Block (ed.), (Kluwer Dordrecht
    • …
    corecore