120 research outputs found

    Biomimetic direction of arrival estimation for resolving front-back confusions in hearing aids

    Get PDF
    Sound sources at the same angle in front or behind a two-microphone array (e.g., bilateral hearing aids) produce the same time delay and two estimates for the direction of arrival: A front-back confusion. The auditory system can resolve this issue using head movements. To resolve front-back confusion for hearing-aid algorithms, head movement was measured using an inertial sensor. Successive time-delay estimates between the microphones are shifted clockwise and counterclockwise by the head movement between estimates and aggregated in two histograms. The histogram with the largest peak after multiple estimates predicted the correct hemifield for the source, eliminating the front-back confusions

    GPS Modeling for Designing Aerospace Vehicle Navigation Systems

    Get PDF
    The complexity of the design of a Global Positioning System (GPS) user segment, as well as the performance demanded of the components, depends on user requirements such as total navigation accuracy. Other factors, for instance the expected satellite/vehicle geometry or the accuracy of an accompanying inertial navigation system can also affect the user segment design. Models of GPS measurements are used to predict user segment performance at various levels. Design curves are developed which illustrate the relationship between user requirements, the user segment design, and component performance

    Biomimetic direction of arrival estimation for resolving front-back confusions in hearing aids

    Get PDF
    Sound sources at the same angle in front or behind a two-microphone array (e.g., bilateral hearing aids) produce the same time delay and two estimates for the direction of arrival: A front-back confusion. The auditory system can resolve this issue using head movements. To resolve front-back confusion for hearing-aid algorithms, head movement was measured using an inertial sensor. Successive time-delay estimates between the microphones are shifted clockwise and counterclockwise by the head movement between estimates and aggregated in two histograms. The histogram with the largest peak after multiple estimates predicted the correct hemifield for the source, eliminating the front-back confusions

    Biomimetic direction of arrival estimation for resolving front-back confusions in hearing aids

    Get PDF
    Abstract: Sound sources at the same angle in front or behind a twomicrophone array (e.g., bilateral hearing aids) produce the same time delay and two estimates for the direction of arrival: A front-back confusion. The auditory system can resolve this issue using head movements. To resolve front-back confusion for hearing-aid algorithms, head movement was measured using an inertial sensor. Successive time-delay estimates between the microphones are shifted clockwise and counterclockwise by the head movement between estimates and aggregated in two histograms. The histogram with the largest peak after multiple estimates predicted the correct hemifield for the source, eliminating the front-back confusions

    Clinical and Molecular Epidemiology of Crimean-Congo Hemorrhagic Fever in Humans in Uganda, 2013-2019

    Get PDF
    Crimean-Congo Hemorrhagic Fever (CCHF) is endemic in Uganda, yet its epidemiology remains largely uncharacterized. To better understand its occurrence within Uganda, case reports of patients hospitalized with CCHF between 2013 and 2019 were reviewed. Further, genome sequences of CCHF-positive RNA obtained during this period were determined for phylogenetic comparisons. We found that a total of 32 cases (75% males; CFR, 31.2%), aged between 9 to 68 years, were reported during the study period. Most cases were detected during July to December of each outbreak year (81.2%; P < 0.01) and were located along the "cattle corridor" (68.7%, P = 0.03). The most common presenting symptoms were fever (93.8%), hemorrhage (81.3%), headache (78.1 %), fatigue (68.8%), vomiting (68.8%), and myalgia (65.6%). In five patients for whom hematological data were available, varied abnormalities were observed including thrombocytopenia, leukopenia, anemia, lymphopenia, lymphocytosis, polycythemia, and microcytosis. About 56.3% (P = 0.47) of patients reported tick bites or exposure to livestock as their potential source of infection. Person-to-person transmission was suspected for two cases. Using unbiased metagenomics, we found that the viral S- and L- segments have remained conserved in Africa 2 Glade since the 1950s. In contrast, the M segment split into two geographically interspersed Glades; one that belongs to Africa 2 and another that is ancestral to Africa 1 and 2. Overall, this data summarizes information on the history and clinical presentation of human CCHF in Uganda. Importantly, it identifies vulnerable populations as well as temporal and geographic regions in Uganda where surveillance and control interventions could be focused

    The Engaged University: Providing a Platform for Research That Transforms Society

    Get PDF
    Despite a growing recognition that the solutions to current environmental problems will be developed through collaborations between scientists and stakeholders, substantial challenges stifle such cooperation and slow the transfer of knowledge. Challenges occur at several levels, including individual, disciplinary, and institutional. All of these have implications for scholars working at academic and research institutions. Fortunately, creative ideas and tested models exist that provide opportunities for conversation and serious consideration about how such institutions can facilitate the dialogue between scientists and societ

    PySAGES: flexible, advanced sampling methods accelerated with GPUs

    Full text link
    Molecular simulations are an important tool for research in physics, chemistry, and biology. The capabilities of simulations can be greatly expanded by providing access to advanced sampling methods and techniques that permit calculation of the relevant underlying free energy landscapes. In this sense, software that can be seamlessly adapted to a broad range of complex systems is essential. Building on past efforts to provide open-source community supported software for advanced sampling, we introduce PySAGES, a Python implementation of the Software Suite for Advanced General Ensemble Simulations (SSAGES) that provides full GPU support for massively parallel applications of enhanced sampling methods such as adaptive biasing forces, harmonic bias, or forward flux sampling in the context of molecular dynamics simulations. By providing an intuitive interface that facilitates the management of a system's configuration, the inclusion of new collective variables, and the implementation of sophisticated free energy-based sampling methods, the PySAGES library serves as a general platform for the development and implementation of emerging simulation techniques. The capabilities, core features, and computational performance of this new tool are demonstrated with clear and concise examples pertaining to different classes of molecular systems. We anticipate that PySAGES will provide the scientific community with a robust and easily accessible platform to accelerate simulations, improve sampling, and enable facile estimation of free energies for a wide range of materials and processes

    Clinical field-strength MRI of amyloid plaques induced by low-level cholesterol feeding in rabbits

    Get PDF
    Two significant barriers have limited the development of effective treatment of Alzheimer's disease. First, for many cases the aetiology is unknown and likely multi-factorial. Among these factors, hypercholesterolemia is a known risk predictor and has been linked to the formation of β-amyloid plaques, a pathological hallmark this disease. Second, standardized diagnostic tools are unable to definitively diagnose this disease prior to death; hence new diagnostic tools are urgently needed. Magnetic resonance imaging (MRI) using high field-strength scanners has shown promise for direct visualization of β-amyloid plaques, allowing in vivo longitudinal tracking of disease progression in mouse models. Here, we present a new rabbit model for studying the relationship between cholesterol and Alzheimer's disease development and new tools for direct visualization of β-amyloid plaques using clinical field-strength MRI. New Zealand white rabbits were fed either a low-level (0.125–0.25% w/w) cholesterol diet (n = 5) or normal chow (n = 4) for 27 months. High-resolution (66 × 66 × 100 µm3; scan time = 96 min) ex vivo MRI of brains was performed using a 3-Tesla (T) MR scanner interfaced with customized gradient and radiofrequency coils. β-Amyloid-42 immunostaining and Prussian blue iron staining were performed on brain sections and MR and histological images were manually registered. MRI revealed distinct signal voids throughout the brains of cholesterol-fed rabbits, whereas minimal voids were seen in control rabbit brains. These voids corresponded directly to small clusters of extracellular β-amyloid-positive plaques, which were consistently identified as iron-loaded (the presumed source of MR contrast). Plaques were typically located in the hippocampus, parahippocampal gyrus, striatum, hypothalamus and thalamus. Quantitative analysis of the number of histologically positive β-amyloid plaques (P < 0.0001) and MR-positive signal voids (P < 0.05) found in cholesterol-fed and control rabbit brains corroborated our qualitative observations. In conclusion, long-term, low-level cholesterol feeding was sufficient to promote the formation of extracellular β-amyloid plaque formation in rabbits, supporting the integral role of cholesterol in the aetiology of Alzheimer's disease. We also present the first evidence that MRI is capable of detecting iron-associated β-amyloid plaques in a rabbit model of Alzheimer's disease and have advanced the sensitivity of MRI for plaque detection to a new level, allowing clinical field-strength scanners to be employed. We believe extension of these technologies to an in vivo setting in rabbits is feasible and that our results support future work exploring the role of MRI as a leading imaging tool for this debilitating and life-threatening disease
    corecore