199 research outputs found

    International Agricultural Research Center Director Preferences for an Information Department Head; Radio Tape User Survey

    Get PDF
    Two research briefs: International Agricultural Research Center Director Preferences for an Information Department Head by Everett Metcalf; Radio Tape User Survey by James F. Whitma

    JWST Pathfinder Telescope Risk Reduction Cryo Test Program

    Get PDF
    In 2014, the Optical Ground Support Equipment was integrated into the large cryo vacuum chamber at Johnson Space Center (JSC) and an initial Chamber Commissioning Test was completed. This insured that the support equipment was ready for the three Pathfinder telescope cryo tests. The Pathfinder telescope which consists of two primary mirror segment assemblies and the secondary mirror was delivered to JSC in February 2015 in support of this critical risk reduction test program prior to the flight hardware. This paper will detail the Chamber Commissioning and first optical test of the JWST Pathfinder telescope

    Rickettsia parkeri in Amblyomma americanum Ticks, Tennessee and Georgia, USA

    Get PDF
    To determine the geographic distribution of the newly recognized human pathogen Rickettsia parkeri, we looked for this organism in ticks from Tennessee and Georgia, USA. Using PCR and sequence analysis, we identified R. parkeri in 2 Amblyomma americanum ticks. This rickettsiosis may be underdiagnosed in the eastern United States

    Burned area and carbon emissions across northwestern boreal North America from 2001-2019

    Get PDF
    Fire is the dominant disturbance agent in Alaskan and Canadian boreal ecosystems and releases large amounts of carbon into the atmosphere. Burned area and carbon emissions have been increasing with climate change, which have the potential to alter the carbon balance and shift the region from a historic sink to a source. It is therefore critically important to track the spatiotemporal changes in burned area and fire carbon emissions over time. Here we developed a new burned-area detection algorithm between 2001-2019 across Alaska and Canada at 500 m (meters) resolution that utilizes finer-scale 30 m Landsat imagery to account for land cover unsuitable for burning. This method strictly balances omission and commission errors at 500 m to derive accurate landscape- and regional-scale burned-area estimates. Using this new burned-area product, we developed statistical models to predict burn depth and carbon combustion for the same period within the NASA Arctic-Boreal Vulnerability Experiment (ABoVE) core and extended domain. Statistical models were constrained using a database of field observations across the domain and were related to a variety of response variables including remotely sensed indicators of fire severity, fire weather indices, local climate, soils, and topographic indicators. The burn depth and aboveground combustion models performed best, with poorer performance for belowground combustion. We estimate 2.37×106 ha (2.37 Mha) burned annually between 2001-2019 over the ABoVE domain (2.87 Mha across all of Alaska and Canada), emitting 79.3 ± 27.96 Tg (±1 standard deviation) of carbon (C) per year, with a mean combustion rate of 3.13 ± 1.17 kg C m-2. Mean combustion and burn depth displayed a general gradient of higher severity in the northwestern portion of the domain to lower severity in the south and east. We also found larger-fire years and later-season burning were generally associated with greater mean combustion. Our estimates are generally consistent with previous efforts to quantify burned area, fire carbon emissions, and their drivers in regions within boreal North America; however, we generally estimate higher burned area and carbon emissions due to our use of Landsat imagery, greater availability of field observations, and improvements in modeling. The burned area and combustion datasets described here (the ABoVE Fire Emissions Database, or ABoVE-FED) can be used for local- to continental-scale applications of boreal fire science

    Sustainability and Long Term-Tenure: Lion Trophy Hunting in Tanzania

    Get PDF
    It is argued that trophy hunting of large, charismatic mammal species can have considerable conservation benefits but only if undertaken sustainably. Social-ecological theory suggests such sustainability only results from developing governance systems that balance financial and biological requirements. Here we use lion (Panthera leo) trophy hunting data from Tanzania to investigate how resource ownership patterns influence hunting revenue and offtake levels. Tanzania contains up to half of the global population of free-ranging lions and is also the main location for lion trophy hunting in Africa. However, there are concerns that current hunting levels are unsustainable. The lion hunting industry in Tanzania is run by the private sector, although the government leases each hunting block to companies, enforces hunting regulation, and allocates them a species-specific annual quota per block. The length of these leases varies and theories surrounding property rights and tenure suggest hunting levels would be less sustainable in blocks experiencing a high turnover of short-term leases. We explored this issue using lion data collected from 1996 to 2008 in the Selous Game Reserve (SGR), the most important trophy hunting destination in Tanzania. We found that blocks in SGR with the highest lion hunting offtake were also those that experienced the steepest declines in trophy offtake. In addition, we found this high hunting offtake and the resultant offtake decline tended to be in blocks under short-term tenure. In contrast, lion hunting levels in blocks under long-term tenure matched more closely the recommended sustainable offtake of 0.92 lions per 1000 km2. However, annual financial returns were higher from blocks under short-term tenure, providing 133perkm2ofgovernmentrevenueascomparedto133 per km2 of government revenue as compared to 62 per km2 from long-term tenure blocks. Our results provide evidence for the importance of property rights in conservation, and support calls for an overhaul of the system in Tanzania by developing competitive market-based approaches for block allocation based on long-term tenure of ten years

    Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens

    Get PDF
    BACKGROUND:Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. METHODOLOGY/PRINCIPAL FINDINGS:In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. CONCLUSIONS/SIGNIFICANCE:Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III)

    Comparative analysis of carboxysome shell proteins

    Get PDF
    Carboxysomes are metabolic modules for CO2 fixation that are found in all cyanobacteria and some chemoautotrophic bacteria. They comprise a semi-permeable proteinaceous shell that encapsulates ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and carbonic anhydrase. Structural studies are revealing the integral role of the shell protein paralogs to carboxysome form and function. The shell proteins are composed of two domain classes: those with the bacterial microcompartment (BMC; Pfam00936) domain, which oligomerize to form (pseudo)hexamers, and those with the CcmL/EutN (Pfam03319) domain which form pentamers in carboxysomes. These two shell protein types are proposed to be the basis for the carboxysome’s icosahedral geometry. The shell proteins are also thought to allow the flux of metabolites across the shell through the presence of the small pore formed by their hexameric/pentameric symmetry axes. In this review, we describe bioinformatic and structural analyses that highlight the important primary, tertiary, and quaternary structural features of these conserved shell subunits. In the future, further understanding of these molecular building blocks may provide the basis for enhancing CO2 fixation in other organisms or creating novel biological nanostructures
    corecore