989 research outputs found

    An XMM-Newton and Chandra Study of the Starburst Galaxy IC 10

    Get PDF
    We present an X-ray study of our nearest starburst galaxy IC 10, based on XMM-Newton and Chandra observations. A list of 73 XMM-Newton and 28 Chandra detections of point-like X-ray sources in the field is provided; a substantial fraction of them are likely stellar objects in the Milky Way due to the low Galactic latitude location of IC 10. The brightest source in the IC 10 field, X-1, shows a large variation by a factor of up to 6\sim 6 on time scales during the XMM-Newton observation. The X-ray spectra of the source indicate the presence of a multi-color blackbody accretion disk with an inner disk temperature T_{in} \approx 1.1 keV. These results are consistent with the interpretation of the source as a stellar mass black hole, probably accreting from a Wolf-Rayet star companion. We infer the mass of this black hole to be about 4 Msun if it is not spinning, or a factor of up to about 6 higher if there is significant spinning. We also detect an apparent diffuse soft X-ray emission component of IC 10. An effective method is devised to remove the X-ray CCD-readout streaks of X-1 that strongly affect the study of the diffuse component in the XMM-Newton and Chandra observations. We find that the diffuse X-ray morphology is oriented along the optical body of the galaxy and is chiefly associated with starburst regions. The diffuse component can be characterized by an optically thin thermal plasma with a mean temperature of 4×106\sim 4 \times 10^6 K and a 0.5-2 keV luminosity of 8×1037ergs1\sim 8 \times 10^{37} {\rm erg s^{-1}}, representing only a small fraction of the expected mechanical energy inputs from massive stars in the galaxy. There is evidence that the hot gas is driving outflows from the starburst regions; therefore, the bulk of the energy inputs may be released in a galactic wind.Comment: 30 pages, accepted for publication in MNRA

    Microbial carbon mineralization in tropical lowland and montane forest soils of Peru

    Get PDF
    Climate change is affecting the amount and complexity of plant inputs to tropical forest soils. This is likely to influence the carbon (C) balance of these ecosystems by altering decomposition processes e.g., "positive priming effects" that accelerate soil organic matter mineralization. However, the mechanisms determining the magnitude of priming effects are poorly understood. We investigated potential mechanisms by adding (13)C labeled substrates, as surrogates of plant inputs, to soils from an elevation gradient of tropical lowland and montane forests. We hypothesized that priming effects would increase with elevation due to increasing microbial nitrogen limitation, and that microbial community composition would strongly influence the magnitude of priming effects. Quantifying the sources of respired C (substrate or soil organic matter) in response to substrate addition revealed no consistent patterns in priming effects with elevation. Instead we found that substrate quality (complexity and nitrogen content) was the dominant factor controlling priming effects. For example a nitrogenous substrate induced a large increase in soil organic matter mineralization whilst a complex C substrate caused negligible change. Differences in the functional capacity of specific microbial groups, rather than microbial community composition per se, were responsible for these substrate-driven differences in priming effects. Our findings suggest that the microbial pathways by which plant inputs and soil organic matter are mineralized are determined primarily by the quality of plant inputs and the functional capacity of microbial taxa, rather than the abiotic properties of the soil. Changes in the complexity and stoichiometry of plant inputs to soil in response to climate change may therefore be important in regulating soil C dynamics in tropical forest soils.This study was financed by the UK Natural Environment Research Council (NERC) grant NE/G018278/1 and is a product of the Andes Biodiversity and Ecosystem Research Group consortium (www.andesconservation.org); Patrick Meir was also supported by ARC FT110100457

    Bright Discrete Solitons in Spatially Modulated DNLS Systems

    Get PDF
    In the present work, we revisit the highly active research area of inhomogeneously nonlinear defocusing media and consider the existence, spectral stability and nonlinear dynamics of bright solitary waves in them. We use the anti-continuum limit of vanishing coupling as the starting point of our analysis, enabling in this way a systematic characterization of the branches of solutions. Our stability findings and bifurcation characteristics reveal the enhanced robustness and wider existence intervals of solutions with a broader support, culminating in the “extended” solution in which all sites are excited. Our eigenvalue predictions are corroborated by numerical linear stability analysis. Finally, the dynamics also reveal a tendency of the solution profiles to broaden, in line with the above findings. These results pave the way for further explorations of such states in discrete systems, including in higher dimensional settings

    G337.342-0.119 (the "Pebble"): A Cold, Dense, High-Mass Molecular Cloud with Unusually Large Linewidths and a Candidate High-Mass Star Cluster Progenitor

    Get PDF
    Exactly how high-mass star clusters form, especially the young massive clusters (YMCs: age 10410^4 solar masses), remains an open problem, largely because they are so rare that examples of their cold, dense, molecuar progenitors remain elusive. The molecular cloud G337.342-0.119, the `Pebble,' is a candidate for such a cold progenitor. Although G337.342-0.119 was originally identified as four separate ATLASGAL clumps, the similarity in their molecular line velocities and linewidths in the MALT90 dataset demonstrate that these four clumps are in fact one single, coherent cloud. This cloud is unique in the MALT90 survey for its combination of both cold temperatures (Tdust14T_{dust} \sim 14 K) and large linewidths (ΔV10(\Delta V \sim 10 km s1^{-1}). The near/far kinematic distance ambiguity is difficult to resolve for G337.342-0.119. At the near kinematic distance (4.7 kpc), the mass is 5,000 solar masses and the size is 7×27\times2 pc. At the far kinematic distance (11 kpc), the mass is 27,000 solar masses and the size is 15×415 \times 4 pc. The unusually large linewidths of G337.342-0.119 are difficult to reconcile with a gravitationally bound system in equilibrium. If our current understanding of the Galaxy's Long Bar is approximately correct, G337.342-0.119 cannot be located at its end. Rather, it is associated with a large star-forming complex that contains multiple clumps with large linewidths. If G337.342-0.119 is a prototypical cold progenitor for a high-mass cluster, its properties may indicate that the onset of high-mass star cluster formation is dominated by extreme turbulence

    Infall Signatures in a Prestellar Core embedded in the High-Mass 70 μμm Dark IRDC G331.372-00.116

    Get PDF
    Using Galactic Plane surveys, we have selected a massive (1200 M_\odot), cold (14 K) 3.6-70 μ\mum dark IRDC G331.372-00.116. This IRDC has the potential to form high-mass stars and, given the absence of current star formation signatures, it seems to represent the earliest stages of high-mass star formation. We have mapped the whole IRDC with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.1 and 1.3 mm in dust continuum and line emission. The dust continuum reveals 22 cores distributed across the IRDC. In this work, we analyze the physical properties of the most massive core, ALMA1, which has no molecular outflows detected in the CO (2-1), SiO (5-4), and H2_2CO (3-2) lines. This core is relatively massive (MM = 17.6 M_\odot), subvirialized (virial parameter αvir=Mvir/M=0.14\alpha_{vir}=M_{vir}/M=0.14), and is barely affected by turbulence (transonic Mach number of 1.2). Using the HCO+^+ (3-2) line, we find the first detection of infall signatures in a relatively massive, prestellar core (ALMA1) with the potential to form a high-mass star. We estimate an infall speed of 1.54 km s1^{-1} and a high accretion rate of 1.96 ×\times 103^{-3} M_\odot yr1^{-1}. ALMA1 is rapidly collapsing, out of virial equilibrium, more consistent with competitive accretion scenarios rather than the turbulent core accretion model. On the other hand, ALMA1 has a mass \sim6 times larger than the clumps Jeans mass, being in an intermediate mass regime (MJ=2.7<MM_{J}=2.7<M\lesssim 30 M_\odot), contrary to what both the competitive accretion and turbulent core accretion theories predict

    Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient

    Get PDF
    Tropical soils contain huge carbon stocks, which climate warming is projected to reduce by stimulating organic matter decomposition, creating a positive feedback that will promote further warming. Models predict that the loss of carbon from warming soils will be mediated by microbial physiology, but no empirical data are available on the response of soil carbon and microbial physiology to warming in tropical forests, which dominate the terrestrial carbon cycle. Here we show that warming caused a considerable loss of soil carbon that was enhanced by associated changes in microbial physiology. By translocating soils across a 3000 m elevation gradient in tropical forest, equivalent to a temperature change of ± 15 °C, we found that soil carbon declined over 5 years by 4% in response to each 1 °C increase in temperature. The total loss of carbon was related to its original quantity and lability, and was enhanced by changes in microbial physiology including increased microbial carbon‐use‐efficiency, shifts in community composition towards microbial taxa associated with warmer temperatures, and increased activity of hydrolytic enzymes. These findings suggest that microbial feedbacks will cause considerable loss of carbon from tropical forest soils in response to predicted climatic warming this century

    Identification and verification of potential biomarkers in gastric cancer by integrated bioinformatic analysis

    Get PDF
    Background: Gastric cancer (GC) is a common cancer with high mortality. This study aimed to identify its differentially expressed genes (DEGs) using bioinformatics methods.Methods: DEGs were screened from four GEO (Gene Expression Omnibus) gene expression profiles. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. A protein–protein interaction (PPI) network was constructed. Expression and prognosis were assessed. Meta-analysis was conducted to further validate prognosis. The receiver operating characteristic curve (ROC) was analyzed to identify diagnostic markers, and a nomogram was developed. Exploration of drugs and immune cell infiltration analysis were conducted.Results: Nine up-regulated and three down-regulated hub genes were identified, with close relations to gastric functions, extracellular activities, and structures. Overexpressed Collagen Type VIII Alpha 1 Chain (COL8A1), Collagen Type X Alpha 1 Chain (COL10A1), Collagen Triple Helix Repeat Containing 1 (CTHRC1), and Fibroblast Activation Protein (FAP) correlated with poor prognosis. The area under the curve (AUC) of ADAM Metallopeptidase With Thrombospondin Type 1 Motif 2 (ADAMTS2), COL10A1, Collagen Type XI Alpha 1 Chain (COL11A1), and CTHRC1 was >0.9. A nomogram model based on CTHRC1 was developed. Infiltration of macrophages, neutrophils, and dendritic cells positively correlated with COL8A1, COL10A1, CTHRC1, and FAP. Meta-analysis confirmed poor prognosis of overexpressed CTHRC1.Conclusion: ADAMTS2, COL10A1, COL11A1, and CTHRC1 have diagnostic values in GC. COL8A1, COL10A1, CTHRC1, and FAP correlated with worse prognosis, showing prognostic and therapeutic values. The immune cell infiltration needs further investigations

    Porphyrin synthesis from ALA derivatives for photodynamic therapy. In vitro and in vivo studies

    Get PDF
    The aim of this work was to test in vitro and in vivo the efficacy of the derivatives of 5-aminolevulinic acid (ALA): hexyl-ALA (He-ALA), undecanoyl-ALA and R,S-2-(hydroximethyl)tetrahydropyranyl-ALA (THP-ALA) as pro-photosensitising agents. The compounds were assayed in a cell line derived from a murine mammary tumour, in tumour explants and after injection of the cells into mice. In vitro, undecanoyl-ALA and THP-ALA did not improve ALA efficacy in terms of porphyrin synthesis. On the other hand, half of the amount of ALA is required to obtain the same plateau amount of photosensitiser from He-ALA. However, this plateau value cannot be surpassed in spite of the four-times higher accumulation of ALA/He-ALA from the ALA derivative. This shows that He-ALA conversion to porphyrins but not He-ALA entry to the cells is limiting. Employing ionic exchange chromatography, we found that 80% of total uptake was He-ALA whereas only 20% was ALA. This suggests that the esterases, probably themselves regulated by the heme pathway, are limiting the conversion of ALA derivatives into porphyrins. A similar situation occurs with THP-ALA. Tumour explant porphyrin results correlate well with cell line data. However, i.p. injection of ALA derivatives to mice resulted in a lower porphyrin concentration in the tumour when compared to the administration of equimolar amounts of ALA, indicating that there should be retention of ALA derivatives either within the blood vessels in the initial phase of distribution and/or within the capillaries of the tumour. © 2004 Cancer Research UK.Fil: Perotti, C.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Investigaciones sobre Porfirinas y Porfirias. Universidad de Buenos Aires. Centro de Investigaciones sobre Porfirinas y Porfirias; ArgentinaFil: Fukuda, Haydee. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Investigaciones sobre Porfirinas y Porfirias. Universidad de Buenos Aires. Centro de Investigaciones sobre Porfirinas y Porfirias; ArgentinaFil: Di Venosa, Gabriela Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Investigaciones sobre Porfirinas y Porfirias. Universidad de Buenos Aires. Centro de Investigaciones sobre Porfirinas y Porfirias; ArgentinaFil: MacRobert, A.J.. No especifíca;Fil: Batlle, Alcira María del C.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Investigaciones sobre Porfirinas y Porfirias. Universidad de Buenos Aires. Centro de Investigaciones sobre Porfirinas y Porfirias; ArgentinaFil: Casas, Adriana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Investigaciones sobre Porfirinas y Porfirias. Universidad de Buenos Aires. Centro de Investigaciones sobre Porfirinas y Porfirias; Argentin
    corecore