24 research outputs found
phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism
It is well accepted that lateral redistribution of the phytohormone auxin underlies the bending of plant organs towards light. In monocots, photoreception occurs at the shoot tip above the region of differential growth. Despite more than a century of research, it is still unresolved how light regulates auxin distribution and where this occurs in dicots. Here, we establish a system in Arabidopsis thaliana to study hypocotyl phototropism in the absence of developmental events associated with seedling photomorphogenesis. We show that auxin redistribution to the epidermal sites of action occurs at and above the hypocotyl apex, not at the elongation zone. Within this region, we identify the auxin efflux transporter ATP-BINDING CASSETTE B19 (ABCB19) as a substrate target for the photoreceptor kinase PHOTOTROPIN 1 (phot1). Heterologous expression and physiological analyses indicate that phosphorylation of ABCB19 by phot1 inhibits its efflux activity, thereby increasing auxin levels in and above the hypocotyl apex to halt vertical growth and prime lateral fluxes that are subsequently channeled to the elongation zone by PIN-FORMED 3 (PIN3). Together, these results provide new insights into the roles of ABCB19 and PIN3 in establishing phototropic curvatures and demonstrate that the proximity of light perception and differential phototropic growth is conserved in angiosperm
Trophic stability and change across a sea ice cover gradient on the western Antarctic Peninsula
The western Antarctic Peninsula (AP) is experiencing significant changes to sea ice cover, altering the macroalgal cover and potentially affecting the foundation of benthic food webs. We used fatty acid signatures as dietary and physiological trophic biomarkers to test the hypothesis that a gradient of 36-88% mean annual ice cover would affect the trophic ecology of fleshy macroalgae and diverse benthic invertebrate consumers along the western AP. We used SCUBA to collect organisms from benthic rocky nearshore habitats, 5-35 m depth, at 15 study sites during April-May of 2019. There were no consistent ecosystem-scale differences in the nutritionally important polyunsaturated fatty acids or other univariate fatty acid summary categories in either the seaweeds or invertebrates across the ice gradient, but we did find site-level differences in the multivariate fatty acid signatures of all seaweeds and invertebrates. Ice cover was a significant driver of the fatty acid signatures of 5 invertebrates, including 3 sessile (an anemone, a sponge, and a tunicate) and 2 mobile consumers (a sea star and a sea urchin). The multivariate fatty acid signatures of 2 other sea stars and a limpet were not affected by the ice gradient. These results indicate that the trophic ecology and resource assimilation of sessile consumers that are more connected to the macroalgal-derived food web will be more sensitive than mobile consumers to impending changes to annual ice and macroalgal cover along the western AP.National Science Foundation.Abstract -- Key words -- 1. Introduction -- 2. Materials and methods -- 3. Results -- 4. Discussion -- 5. Conclusions -- Acknowledgements -- Literature CitedYe
Probing the roles of LRR RLK genes in Arabidopsis thaliana roots using a custom T-DNA insertion set
Leucine-rich repeat receptor-like protein kinases (LRR RLKs) represent the largest group of Arabidopsis RLKs with approximately 235 members. A minority of these LRR RLKs have been assigned to diverse roles in development, pathogen resistance and hormone perception. Using a reverse genetics approach, a collection of homozygous T-DNA insertion lines for 69 root expressed LRR RLK genes was screened for root developmental defects and altered response after exposure to environmental, hormonal/chemical and abiotic stress. The obtained data demonstrate that LRR RLKs play a role in a wide variety of signal transduction pathways related to hormone and abiotic stress responses. The described collection of T-DNA insertion mutants provides a valuable tool for future research into the function of LRR RLK genes
Climate drives the geography of marine consumption by changing predator communities
Este artículo contiene 7 páginas, 3 figuras, 1 tabla.The global distribution of primary production and consumption by
humans (fisheries) is well-documented, but we have no map linking
the central ecological process of consumption within food
webs to temperature and other ecological drivers. Using standardized
assays that span 105° of latitude on four continents, we show
that rates of bait consumption by generalist predators in shallow
marine ecosystems are tightly linked to both temperature and the
composition of consumer assemblages. Unexpectedly, rates of
consumption peaked at midlatitudes (25 to 35°) in both Northern
and Southern Hemispheres across both seagrass and unvegetated
sediment habitats. This pattern contrasts with terrestrial systems,
where biotic interactions reportedly weaken away from the equator,
but it parallels an emerging pattern of a subtropical peak in
marine biodiversity. The higher consumption at midlatitudes was
closely related to the type of consumers present, which explained
rates of consumption better than consumer density, biomass, species
diversity, or habitat. Indeed, the apparent effect of temperature
on consumption was mostly driven by temperature-associated turnover
in consumer community composition. Our findings reinforce
the key influence of climate warming on altered species composition
and highlight its implications for the functioning of Earth’s
ecosystems.We acknowledge funding from the Smithsonian
Institution and the Tula Foundation.Peer reviewe
CLUMPED CHLOROPLASTS 1 is required for plastid separation in Arabidopsis
We identified an Arabidopsis thaliana mutant, clumped chloroplasts 1 (clmp1), in which disruption of a gene of unknown function causes chloroplasts to cluster instead of being distributed throughout the cytoplasm. The phenotype affects chloroplasts and nongreen plastids in multiple organs and cell types, but is detectable only at certain developmental stages. In young leaf petioles of clmp1, where clustering is prevalent, cells lacking chloroplasts are detected, suggesting impaired chloroplast partitioning during mitosis. Although organelle distribution and partitioning are actin-dependent in plants, the actin cytoskeleton in clmp1 is indistinguishable from that in WT, and peroxisomes and mitochondria are distributed normally. A CLMP1-YFP fusion protein that complements clmp1 localizes to discrete foci in the cytoplasm, most of which colocalize with the cell periphery or with chloroplasts. Ultrastructural analysis revealed that chloroplasts within clmp1 clusters are held together by membranous connections, including thin isthmi characteristic of late-stage chloroplast division. This finding suggests that constriction of dividing chloroplasts proceeds normally in clmp1, but separation is impaired. Consistently, chloroplast size and number, as well as positioning of the plastid division proteins FtsZ and ARC5/DRP5B, are unaffected in clmp1, indicating that loss of CLMP1-mediated chloroplast separation does not prevent otherwise normal division. CLMP1-like sequences are unique to green algae and land plants, and the CLMP1 sequence suggests that it functions through protein–protein interactions. Our studies identify a unique class of proteins required for plastid separation after the constriction stage of plastid division and indicate that CLMP1 activity is also required for plastid distribution and partitioning during cell division