140 research outputs found

    Anti-oesophageal cancer activity in extracts of deep-water Marion Island sponges

    Get PDF
    Oesophageal cancer is one of the most common causes of cancer-related deaths in South African black males. The limited efficacy of chemotherapeutic agents to treat this disease has prompted a search for potential new chemical entities with anticancer properties. We report here on the evidence for anti-oesophageal cancer activity in the methanolic extracts of five species of sponges dredged from a depth of approximately 100 m in the vicinity of Marion Island in the Southern Ocean during the autumn of 2004

    Fibrofog in daily life : An examination of ambulatory subjective and objective cognitive function in fibromyalgia

    Get PDF
    Research reported in this publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (award number K01AR064275; PI: Kratz). The Michigan Institute for Clinical & Health Research (MICHR: NIH award number UL1TR002240) provided subject recruitment support through the UMHealthResearch.org website. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.Peer reviewedPostprin

    Effect of pain on mood affective disorders in adults with cerebral palsy

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155961/1/dmcn14559_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155961/2/dmcn14559.pd

    Characterization of Novel and Uncharacterized p53 SNPs in the Chinese Population – Intron 2 SNP Co-Segregates with the Common Codon 72 Polymorphism

    Get PDF
    Multiple single nucleotide polymorphisms (SNPs) have been identified in the tumor suppressor gene p53, though the relevance of many of them is unclear. Some of them are also differentially distributed in various ethnic populations, suggesting selective functionality. We have therefore sequenced all exons and flanking regions of p53 from the Singaporean Chinese population and report here the characterization of some novel and uncharacterized SNPs - four in intron 1 (nucleotide positions 8759/10361/10506/11130), three in intron 3 (11968/11969/11974) and two in the 3′UTR (19168/19514). Allelic frequencies were determined for all these and some known SNPs, and were compared in a limited scale to leukemia and lung cancer patient samples. Intron 2 (11827) and 7 (14181/14201) SNPs were found to have a high minor allele frequency of between 26–47%, in contrast to the lower frequencies found in the US population, but similar in trend to the codon 72 polymorphism (SNP12139) that shows a distribution pattern correlative with latitude. Several of the SNPs were linked, such as those in introns 1, 3 and 7. Most interestingly, we noticed the co-segregation of the intron 2 and the codon 72 SNPs, the latter which has been shown to be expressed in an allele-specific manner, suggesting possible regulatory cross-talk. Association analysis indicated that the T/G alleles in both the co-segregating intron 7 SNPs and a 4tagSNP haplotype was strongly associated increased susceptibility to lung cancer in non-smoker females [OR: 1.97 (1.32, 3.394)]. These data together demonstrate high SNP diversity in p53 gene between different populations, highlighting ethnicity-based differences, and their association with cancer risk

    Lack of Wdr13 Gene in Mice Leads to Enhanced Pancreatic Beta Cell Proliferation, Hyperinsulinemia and Mild Obesity

    Get PDF
    WD-repeat proteins are very diverse, yet these are structurally related proteins that participate in a wide range of cellular functions. WDR13, a member of this family, is conserved from fishes to humans and localizes into the nucleus. To understand the in vivo function(s) of Wdr13 gene, we have created and characterized a mutant mouse strain lacking this gene. The mutant mice had higher serum insulin levels and increased pancreatic islet mass as a result of enhanced beta cell proliferation. While a known cell cycle inhibitor, p21, was downregulated in the mutant islets, over expression of WDR13 in the pancreatic beta cell line (MIN6) resulted in upregulation of p21, accompanied by retardation of cell proliferation. We suggest that WDR13 is a novel negative regulator of the pancreatic beta cell proliferation. Given the higher insulin levels and better glucose clearance in Wdr13 gene deficient mice, we propose that this protein may be a potential candidate drug target for ameliorating impaired glucose metabolism in diabetes

    Human PTCHD3 nulls: rare copy number and sequence variants suggest a non-essential gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copy number variations (CNVs) can contribute to variable degrees of fitness and/or disease predisposition. Recent studies show that at least 1% of any given genome is copy number variable when compared to the human reference sequence assembly. Homozygous deletions (or CNV nulls) that are found in the normal population are of particular interest because they may serve to define non-essential genes in human biology.</p> <p>Results</p> <p>In a genomic screen investigating CNV in Autism Spectrum Disorders (ASDs) we detected a heterozygous deletion on chromosome 10p12.1, spanning the Patched-domain containing 3 (<it>PTCHD3</it>) gene, at a frequency of ~1.4% (6/427). This finding seemed interesting, given recent discoveries on the role of another Patched-domain containing gene (<it>PTCHD1</it>) in ASD. Screening of another 177 ASD probands yielded two additional heterozygous deletions bringing the frequency to 1.3% (8/604). The deletion was found at a frequency of ~0.73% (27/3,695) in combined control population from North America and Northern Europe predominately of European ancestry. Screening of the human genome diversity panel (HGDP-CEPH) covering worldwide populations yielded deletions in 7/1,043 unrelated individuals and those detected were confined to individuals of European/Mediterranean/Middle Eastern ancestry. Breakpoint mapping yielded an identical 102,624 bp deletion in all cases and controls tested, suggesting a common ancestral event. Interestingly, this CNV occurs at a break of synteny between humans and mouse. Considering all data, however, no significant association of these rare <it>PTCHD3 </it>deletions with ASD was observed. Notwithstanding, our RNA expression studies detected <it>PTCHD3 </it>in several tissues, and a novel shorter isoform for <it>PTCHD3 </it>was characterized. Expression in transfected COS-7 cells showed <it>PTCHD3 </it>isoforms colocalize with calnexin in the endoplasmic reticulum. The presence of a patched (Ptc) domain suggested a role for <it>PTCHD3 </it>in various biological processes mediated through the Hedgehog (Hh) signaling pathway. However, further investigation yielded one individual harboring a homozygous deletion (<it>PTCHD3 </it>null) without ASD or any other overt abnormal phenotype. Exon sequencing of <it>PTCHD3 </it>in other individuals with deletions revealed compound point mutations also resulting in a null state.</p> <p>Conclusion</p> <p>Our data suggests that <it>PTCHD3 </it>may be a non-essential gene in some humans and characterization of this novel CNV at 10p12.1 will facilitate population and disease studies.</p

    Genetic Variation in the TP53 Pathway and Bladder Cancer Risk. A Comprehensive Analysis

    Get PDF
    Introduction: Germline variants in TP63 have been consistently associated with several tumors, including bladder cancer, indicating the importance of TP53 pathway in cancer genetic susceptibility. However, variants in other related genes, including TP53 rs1042522 (Arg72Pro), still present controversial results. We carried out an in depth assessment of associations between common germline variants in the TP53 pathway and bladder cancer risk. Material and Methods: We investigated 184 tagSNPs from 18 genes in 1,058 cases and 1,138 controls from the Spanish Bladder Cancer/EPICURO Study. Cases were newly-diagnosed bladder cancer patients during 1998–2001. Hospital controls were age-gender, and area matched to cases. SNPs were genotyped in blood DNA using Illumina Golden Gate and TaqMan assays. Cases were subphenotyped according to stage/grade and tumor p53 expression. We applied classical tests to assess individual SNP associations and the Least Absolute Shrinkage and Selection Operator (LASSO)-penalized logistic regression analysis to assess multiple SNPs simultaneously. Results: Based on classical analyses, SNPs in BAK1 (1), IGF1R (5), P53AIP1 (1), PMAIP1 (2), SERINPB5 (3), TP63 (3), and TP73 (1) showed significant associations at p-value#0.05. However, no evidence of association, either with overall risk or with specific disease subtypes, was observed after correction for multiple testing (p-value$0.8). LASSO selected the SNP rs6567355 in SERPINB5 with 83% of reproducibility. This SNP provided an OR = 1.21, 95%CI 1.05–1.38, p-value = 0.006, and a corrected p-value = 0.5 when controlling for over-estimation. Discussion: We found no strong evidence that common variants in the TP53 pathway are associated with bladder cancer susceptibility. Our study suggests that it is unlikely that TP53 Arg72Pro is implicated in the UCB in white Europeans. SERPINB5 and TP63 variation deserve further exploration in extended studies.This work was supported by the Fondo de Investigacion Sanitaria, Spain (grant numbers 00/0745, PI051436, PI061614, G03/174); Red Tematica de Investigacion Cooperativa en Cancer (grant number RD06/0020-RTICC), Spain; Marato TV3 (grant number 050830); European Commission (grant numbers EU-FP7-HEALTH-F2-2008-201663-UROMOL; US National Institutes of Health (grant number USA-NIH-RO1-CA089715); and the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute at the National Institutes of Health, USA; Consolider ONCOBIO (Ministerio de Economia y Competitividad, Madrid, Spain). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Analysis of Tp53 Codon 72 Polymorphisms, Tp53 Mutations, and HPV Infection in Cutaneous Squamous Cell Carcinomas

    Get PDF
    Non-melanoma skin cancers are one of the most common human malignancies accounting for 2-3% of tumors in the US and represent a significant health burden. Epidemiology studies have implicated Tp53 mutations triggered by UV exposure, and human papilloma virus (HPV) infection to be significant causes of non-melanoma skin cancer. However, the relationship between Tp53 and cutaneous HPV infection is not well understood in skin cancers. In this study we assessed the association of HPV infection and Tp53 polymorphisms and mutations in lesional specimens with squamous cell carcinomas.We studied 55 cases of histologically confirmed cutaneous squamous cell carcinoma and 41 controls for the presence of HPV infection and Tp53 genotype (mutations and polymorphism).We found an increased number of Tp53 mutations in the squamous cell carcinoma samples compared with perilesional or control samples. There was increased frequency of homozygous Tp53-72R polymorphism in cases with squamous cell carcinomas, while the Tp53-72P allele (Tp53-72R/P and Tp53-72P/P) was more frequent in normal control samples. Carcinoma samples positive for HPV showed a decreased frequency of Tp53 mutations compared to those without HPV infection. In addition, carcinoma samples with a Tp53-72P allele showed an increased incidence of Tp53 mutations in comparison carcinomas samples homozygous for Tp53-72R.These studies suggest there are two separate pathways (HPV infection and Tp53 mutation) leading to cutaneous squamous cell carcinomas stratified by the Tp53 codon-72 polymorphism. The presence of a Tp53-72P allele is protective against cutaneous squamous cell carcinoma, and carcinoma specimens with Tp53-72P are more likely to have Tp53 mutations. In contrast Tp53-72R is a significant risk factor for cutaneous squamous cell carcinoma and is frequently associated with HPV infection instead of Tp53 mutations. Heterozygosity for Tp53-72R/P is protective against squamous cell carcinomas, possibly reflecting a requirement for both HPV infection and Tp53 mutations

    X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    Get PDF
    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4−/− mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases
    corecore