48 research outputs found
Development of FuGO: An ontology for functional genomics investigations
The development of the Functional Genomics Investigation Ontology (FuGO) is a collaborative, international effort that will provide a resource for annotating functional genomics investigations, including the study design, protocols and instrumentation used, the data generated and the types of analysis performed on the data. FuGO will contain both terms that are universal to all functional genomics investigations and those that are domain specific. In this way, the ontology will serve as the “semantic glue” to provide a common understanding of data from across these disparate data
sources. In addition, FuGO will reference out to existing mature ontologies to avoid the need to duplicate these resources, and will do so in such a way as to enable their ease of use in annotation. This project is in the early stages of development; the paper will describe efforts to initiate the project, the scope and organization of the project, the work accomplished to date, and the challenges encountered, as well as future plans
Bioportal: Ontologies and integrated data resources at the click of the mouse
BioPortal is a Web portal that provides access to a library of biomedical ontologies and terminologies developed in OWL, RDF(S), OBO format, Protégé frames, and Rich Release Format. BioPortal functionality, driven by a service-oriented architecture, includes the ability to browse, search and visualize ontologies (Figure 1). The Web interface also facilitates community-based participation in the evaluation and evolution of ontology content
The OBO Foundry: Coordinated Evolution of Ontologies to Support Biomedical Data Integration
The value of any kind of data is greatly enhanced when it exists in a form that allows it to be integrated with other data. One approach to integration is through the annotation of multiple bodies of data using common controlled vocabularies or ‘ontologies’. Unfortunately, the very success of this approach has led to a proliferation of ontologies, which itself creates obstacles to integration. The Open Biomedical Ontologies (OBO) consortium has set in train a strategy to overcome this problem. Existing OBO ontologies, including the Gene Ontology, are undergoing a process of coordinated reform, and new ontologies being created, on the basis of an evolving set of shared principles governing ontology development. The result is an expanding family of ontologies designed to be interoperable, logically well-formed, and to incorporate accurate representations of biological reality. We describe the OBO Foundry initiative, and provide guidelines for those who might wish to become involved in the future
A simple spreadsheet-based, MIAME-supportive format for microarray data: MAGE-TAB
BACKGROUND: Sharing of microarray data within the research community has been greatly facilitated by the development of the disclosure and communication standards MIAME and MAGE-ML by the MGED Society. However, the complexity of the MAGE-ML format has made its use impractical for laboratories lacking dedicated bioinformatics support. RESULTS: We propose a simple tab-delimited, spreadsheet-based format, MAGE-TAB, which will become a part of the MAGE microarray data standard and can be used for annotating and communicating microarray data in a MIAME compliant fashion. CONCLUSION: MAGE-TAB will enable laboratories without bioinformatics experience or support to manage, exchange and submit well-annotated microarray data in a standard format using a spreadsheet. The MAGE-TAB format is self-contained, and does not require an understanding of MAGE-ML or XML
The Translational Medicine Ontology and Knowledge Base: driving personalized medicine by bridging the gap between bench and bedside
Background: Translational medicine requires the integration of knowledge using heterogeneous data from health care to the life sciences. Here, we describe a collaborative effort to produce a prototype Translational Medicine Knowledge Base (TMKB) capable of answering questions relating to clinical practice and pharmaceutical drug discovery. Results: We developed the Translational Medicine Ontology (TMO) as a unifying ontology to integrate chemical, genomic and proteomic data with disease, treatment, and electronic health records. We demonstrate the use of Semantic Web technologies in the integration of patient and biomedical data, and reveal how such a knowledge base can aid physicians in providing tailored patient care and facilitate the recruitment of patients into active clinical trials. Thus, patients, physicians and researchers may explore the knowledge base to better understand therapeutic options, efficacy, and mechanisms of action. Conclusions: This work takes an important step in using Semantic Web technologies to facilitate integration of relevant, distributed, external sources and progress towards a computational platform to support personalized medicine. Availability: TMO can be downloaded from http://code.google.com/p/translationalmedicineontology and TMKB can be accessed at http://tm.semanticscience.org/sparql
Meeting Report from the Second 'Minimum Information for Biological and Biomedical Investigations (MIBBI) workshop
Face-to-face meetings play a central role in the birth and maturation of communities. Intensive workshops filled with presentations, discussions and working group meetings have always been at the heart of the activities of the Genomic Standards Consortium (GSC). Such work-driven meetings are a key way in which the GSC fulfils its mission. Similarly, meeting reports provide a key mechanism for preserving and disseminating the consensus built at such meetings as they describe the range of speakers and participants present, topics covered and key outcomes and priorities agreed upon by the community.This issue contains a total of nine meeting reports, from workshops held between April and October 2010 that are presented to the reader to provide a broad overview of ongoing GSC activities and initiatives
Towards BioDBcore: a community-defined information specification for biological databases
The present article proposes the adoption of a community-defined, uniform, generic description of the core attributes of biological databases, BioDBCore. The goals of these attributes are to provide a general overview of the database landscape, to encourage consistency and interoperability between resources and to promote the use of semantic and syntactic standards. BioDBCore will make it easier for users to evaluate the scope and relevance of available resources. This new resource will increase the collective impact of the information present in biological database
The Monarch Initiative in 2024: an analytic platform integrating phenotypes, genes and diseases across species.
Bridging the gap between genetic variations, environmental determinants, and phenotypic outcomes is critical for supporting clinical diagnosis and understanding mechanisms of diseases. It requires integrating open data at a global scale. The Monarch Initiative advances these goals by developing open ontologies, semantic data models, and knowledge graphs for translational research. The Monarch App is an integrated platform combining data about genes, phenotypes, and diseases across species. Monarch\u27s APIs enable access to carefully curated datasets and advanced analysis tools that support the understanding and diagnosis of disease for diverse applications such as variant prioritization, deep phenotyping, and patient profile-matching. We have migrated our system into a scalable, cloud-based infrastructure; simplified Monarch\u27s data ingestion and knowledge graph integration systems; enhanced data mapping and integration standards; and developed a new user interface with novel search and graph navigation features. Furthermore, we advanced Monarch\u27s analytic tools by developing a customized plugin for OpenAI\u27s ChatGPT to increase the reliability of its responses about phenotypic data, allowing us to interrogate the knowledge in the Monarch graph using state-of-the-art Large Language Models. The resources of the Monarch Initiative can be found at monarchinitiative.org and its corresponding code repository at github.com/monarch-initiative/monarch-app