69 research outputs found

    Chemical and forensic analysis of JFK assassination bullet lots: Is a second shooter possible?

    Get PDF
    The assassination of President John Fitzgerald Kennedy (JFK) traumatized the nation. In this paper we show that evidence used to rule out a second assassin is fundamentally flawed. This paper discusses new compositional analyses of bullets reportedly to have been derived from the same batch as those used in the assassination. The new analyses show that the bullet fragments involved in the assassination are not nearly as rare as previously reported. In particular, the new test results are compared to key bullet composition testimony presented before the House Select Committee on Assassinations (HSCA). Matches of bullets within the same box of bullets are shown to be much more likely than indicated in the House Select Committee on Assassinations' testimony. Additionally, we show that one of the ten test bullets is considered a match to one or more assassination fragments. This finding means that the bullet fragments from the assassination that match could have come from three or more separate bullets. Finally, this paper presents a case for reanalyzing the assassination bullet fragments and conducting the necessary supporting scientific studies. These analyses will shed light on whether the five bullet fragments constitute three or more separate bullets. If the assassination fragments are derived from three or more separate bullets, then a second assassin is likely, as the additional bullet would not easily be attributable to the main suspect, Mr. Oswald, under widely accepted shooting scenarios [see Posner (1993), Case Closed, Bantam, New York].Comment: Published in at http://dx.doi.org/10.1214/07-AOAS119 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Predicting muscle forces of individuals with hemiparesis following stroke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Functional electrical stimulation (FES) has been used to improve function in individuals with hemiparesis following stroke. An ideal functional electrical stimulation (FES) system needs an accurate mathematical model capable of designing subject and task-specific stimulation patterns. Such a model was previously developed in our laboratory and shown to predict the isometric forces produced by the quadriceps femoris muscles of able-bodied individuals and individuals with spinal cord injury in response to a wide range of clinically relevant stimulation frequencies and patterns. The aim of this study was to test our isometric muscle force model on the quadriceps femoris, ankle dorsiflexor, and ankle plantar-flexor muscles of individuals with post-stroke hemiparesis.</p> <p>Methods</p> <p>Subjects were seated on a force dynamometer and isometric forces were measured in response to a range of stimulation frequencies (10 to 80-Hz) and 3 different patterns. Subject-specific model parameter values were obtained by fitting the measured force responses from 2 stimulation trains. The model parameters thus obtained were then used to obtain predicted forces for a range of frequencies and patterns. Predicted and measured forces were compared using intra-class correlation coefficients, r<sup>2 </sup>values, and model error relative to the physiological error (variability of measured forces).</p> <p>Results</p> <p>Results showed excellent agreement between measured and predicted force-time responses (r<sup>2 </sup>>0.80), peak forces (ICCs>0.84), and force-time integrals (ICCs>0.82) for the quadriceps, dorsiflexor, and plantar-fexor muscles. The <it>model error </it>was within or below the +95% confidence interval of the <it>physiological error </it>for >88% comparisons between measured and predicted forces.</p> <p>Conclusion</p> <p>Our results show that the model has potential to be incorporated as a feed-forward controller for predicting subject-specific stimulation patterns during FES.</p

    Development of a mathematical model for predicting electrically elicited quadriceps femoris muscle forces during isovelocity knee joint motion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Direct electrical activation of skeletal muscles of patients with upper motor neuron lesions can restore functional movements, such as standing or walking. Because responses to electrical stimulation are highly nonlinear and time varying, accurate control of muscles to produce functional movements is very difficult. Accurate and predictive mathematical models can facilitate the design of stimulation patterns and control strategies that will produce the desired force and motion. In the present study, we build upon our previous isometric model to capture the effects of constant angular velocity on the forces produced during electrically elicited concentric contractions of healthy human quadriceps femoris muscle. Modelling the isovelocity condition is important because it will enable us to understand how our model behaves under the relatively simple condition of constant velocity and will enable us to better understand the interactions of muscle length, limb velocity, and stimulation pattern on the force produced by the muscle.</p> <p>Methods</p> <p>An additional term was introduced into our previous isometric model to predict the force responses during constant velocity limb motion. Ten healthy subjects were recruited for the study. Using a KinCom dynamometer, isometric and isovelocity force data were collected from the human quadriceps femoris muscle in response to a wide range of stimulation frequencies and patterns. % error, linear regression trend lines, and paired t-tests were used to test how well the model predicted the experimental forces. In addition, sensitivity analysis was performed using Fourier Amplitude Sensitivity Test to obtain a measure of the sensitivity of our model's output to changes in model parameters.</p> <p>Results</p> <p>Percentage RMS errors between modelled and experimental forces determined for each subject at each stimulation pattern and velocity showed that the errors were in general less than 20%. The coefficients of determination between the measured and predicted forces show that the model accounted for ~86% and ~85% of the variances in the measured force-time integrals and peak forces, respectively.</p> <p>Conclusion</p> <p>The range of predictive abilities of the isovelocity model in response to changes in muscle length, velocity, and stimulation frequency for each individual make it ideal for dynamic applications like FES cycling.</p

    In vitro and in vivo antifungal profile of a novel and long acting inhaled azole, PC945, on Aspergillus fumigatus infection

    Get PDF
    The profile of PC945, a novel triazole antifungal, designed for administration via inhalation, hasbeen assessed in a range of in vitro and in vivo studies. PC945 was characterized as a potent, tight-binding inhibitor of Aspergillus fumigatus sterol 14α-demethylase (CYP51A and CYP51B)activity.In addition, when A. fumigatus hyphae or human bronchial cells were treated with PC945, and thenwashed, PC945 was found to be quickly absorbed into both target and non-target cells and toproduce persistent antifungal effects. In temporarily neutropenic immunocompromised miceinfected with A. fumigatus intranasally, 50% of the animals survived until day 7 when treatedintranasally with PC945 at 0.56 μg/mouse, while posaconazole showed similar effects (44%) at14 μg/mouse. This profile affirms that topical treatment with PC945 should provide potentantifungal activity in the lung

    Vpliv prašnih delcev na bolezni dihal in srčno-žilnega sistema

    Get PDF

    The Faraday Effect Tracker of Coronal and Heliospheric Structures (FETCH) instrument

    Get PDF
    There continue to be open questions regarding the solar wind and coronal mass ejections (CMEs). For example: how do magnetic fields within CMEs and corotating/stream interaction regions (CIRs/SIRs) evolve in the inner heliosphere? What is the radially distributed magnetic profile of shock-driving CMEs? What is the internal magnetic structure of CMEs that cause magnetic storms? It is clear that these questions involve the magnetic configurations of solar wind and transient interplanetary plasma structures, for which we have limited knowledge. In order to better understand the origin of the magnetic field variability in steady-state structures and transient events, it is necessary to probe the magnetic field in Earth-directed structures/disturbances. This is the goal of the Multiview Observatory for Solar Terrestrial Science (MOST) mission (Gopalswamy et al., 2022). For MOST to answer the aforementioned questions, we propose the instrument concept of the Faraday Effect Tracker of Coronal and Heliospheric structures (FETCH), a simultaneous quad-line-of-sight polarization radio remote-sensing instrument. With FETCH, spacecraft radio beams passing through the Sun–Earth line offer the possibility of obtaining information of plasma conditions via analysis of radio propagation effects such as Faraday rotation and wave dispersion, which provide information of the magnetic field and total electron content (TEC). This is the goal of the FETCH instrument, one of ten instruments proposed to be hosted on the MOST mission. The MOST mission will provide an unprecedented opportunity to achieve NASA’s heliophysics science goal to “explore and characterize the physical processes in the space environment from the Sun” (Gopalswamy et al., 2022)

    Fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin with gemtuzumab ozogamicin improves event-free survival in younger patients with newly diagnosed aml and overall survival in patients with npm1 and flt3 mutations

    Get PDF
    Purpose To determine the optimal induction chemotherapy regimen for younger adults with newly diagnosed AML without known adverse risk cytogenetics. Patients and Methods One thousand thirty-three patients were randomly assigned to intensified (fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin [FLAG-Ida]) or standard (daunorubicin and Ara-C [DA]) induction chemotherapy, with one or two doses of gemtuzumab ozogamicin (GO). The primary end point was overall survival (OS). Results There was no difference in remission rate after two courses between FLAG-Ida + GO and DA + GO (complete remission [CR] + CR with incomplete hematologic recovery 93% v 91%) or in day 60 mortality (4.3% v 4.6%). There was no difference in OS (66% v 63%; P = .41); however, the risk of relapse was lower with FLAG-Ida + GO (24% v 41%; P < .001) and 3-year event-free survival was higher (57% v 45%; P < .001). In patients with an NPM1 mutation (30%), 3-year OS was significantly higher with FLAG-Ida + GO (82% v 64%; P = .005). NPM1 measurable residual disease (MRD) clearance was also greater, with 88% versus 77% becoming MRD-negative in peripheral blood after cycle 2 (P = .02). Three-year OS was also higher in patients with a FLT3 mutation (64% v 54%; P = .047). Fewer transplants were performed in patients receiving FLAG-Ida + GO (238 v 278; P = .02). There was no difference in outcome according to the number of GO doses, although NPM1 MRD clearance was higher with two doses in the DA arm. Patients with core binding factor AML treated with DA and one dose of GO had a 3-year OS of 96% with no survival benefit from FLAG-Ida + GO. Conclusion Overall, FLAG-Ida + GO significantly reduced relapse without improving OS. However, exploratory analyses show that patients with NPM1 and FLT3 mutations had substantial improvements in OS. By contrast, in patients with core binding factor AML, outcomes were excellent with DA + GO with no FLAG-Ida benefit
    • …
    corecore